Читать онлайн Полный справочник санитарного врача бесплатно
- Все книги автора: Владимир Николаевич Шилов, Елена Мурадова, Марина Краснова, Михаил Шальнов
Часть 1
Гигиена и санитария окружающей среды
Глава 1. Санитарная охрана окружающей среды населенных мест
Методы оценки воздействия факторов
Гигиена (от гр. hygieinos – «здоровый») – наука, изучающая влияние условий, в которых находится человек, на его здоровье и разрабатывающая мероприятия по профилактике заболеваний, обеспечению оптимальных условий, сохранению здоровья.
Нормативная основа деятельности ЦГСЭН базируется на Федеральном законе № 53-ФЗ от 30.03.1999 «О санитарно-эпидемиологическом благополучии населения» и постановлении Правительства РФ от 24 июля 2000 г. № 554 «Об утверждении Положения о санитарно-эпидемиологической службе Российской Федерации и Положения о государственном санитарно-гигиеническом нормировании».
Основными задачами гигиены являются следующие:
1) разработка предупредительного и текущего санитарного надзора, санитарного законодательства;
2) обоснование гигиенических мероприятий по охране и оздоровлению окружающей среды, условий труда и отдыха;
3) охрана здоровья детей и подростков;
4) участие в разработке основ рационального питания;
5) санитарная экспертиза качества пищевых продуктов и предметов бытового обихода.
Основами гигиены служат гигиенические нормативы – предельно допустимые концентрации (ПДК) и уровни (ПДУ), ориентировочно безопасные уровни воздействия (ОБУВ) для воздуха населенных мест и промышленных предприятий, воды, продуктов питания с целью создания наиболее благоприятных условий для сохранения здоровья и предупреждения заболеваний, обеспечения высокой работоспособности.
Гигиена как раздел медицины, изучающий связь и взаимодействие организма с окружающей средой, тесно соотносится со всеми дисциплинами, обеспечивающими формирование гигиенического мировоззрения врача, – биологией, физиологией, микробиологией, клиническими дисциплинами. Это дает возможность широкого использования методов и данных этих наук в гигиенических исследованиях с целью изучения влияния факторов окружающей среды на организм человека, а также в разработке комплекса профилактических мероприятий. Гигиеническая характеристика факторов среды и данные об их влиянии на здоровье в свою очередь способствуют более обоснованной диагностике заболеваний, патогенетическому лечению.
Гигиена включает в себя ряд разделов, каждый из которых охватывает самостоятельную область гигиенической науки и практики (коммунальную гигиену, гигиену труда, гигиену детей и подростков, гигиену питания, радиационную гигиену и др.). Особое место занимает самостоятельная гигиеническая дисциплина – общая гигиена. Как пропедевтическая дисциплина общая гигиена раскрывает основные положения учения об окружающей среде, закономерностях влияния природных, бытовых, производственных факторов на здоровье и заболеваемость населения, а также определяет направление оздоровительных мероприятий.
Изучение взаимодействия организма и окружающей среды производится посредством гигиенической методологии, охватывающей сумму методов и методик.
В гигиене и санитарии используется ряд методов оценки факторов окружающей среды. Это методы санитарного обследования и описания, физические, химические и биологические методы, а также методы санитарной экспертизы. Одновременно используются методы исследования, с помощью которых можно выявить влияние на организм факторов окружающей среды. К ним относятся эпидемиологические, санитарно-статистические, клинические методы, а также гигиенический эксперимент.
Комплекс санитарно-гигиенических исследований условий жизни населения начинается обычно с санитарного описания. По результатам углубленного санитарного обследования разрабатывается план мероприятий по устранению недостатков и их отрицательного влияния на здоровье и санитарные условия жизни. Так, например, осмотр водоемов позволяет открыть возможные источники загрязнения воды, наметить пути к пресечению дальнейшего загрязнения, определить дебит водоисточника и др.
Метод санитарного описания также широко используется при изучении условий жизни в населенных местах – жилищных, производственных, бытовых и др. Санитарному описанию подвергаются объекты окружающей среды, условия жизни и труда. К ним относятся водоисточники, почва, воздушная среда, пищевые продукты, жилье, места труда и отдыха, больничные и школьные учреждения и др. Однако следует помнить, что санитарное описание не дает количественной характеристики и дополняется более точными физическими, химическими, биологическими и другими методами исследования.
С помощью физических методов исследования характеризуются температура, влажность, скорость движения, электрическое состояние воздуха, барометрическое давление, все виды лучистой энергии. Физические методы широко применяются в коммунальной гигиене при оценке климата населенных мест, в гигиене труда для характеристики метеорологических условий в производстве, различных видов излучений. Физические методы используются в определении химического состава и структуры вещества в виде спектрографического анализа. С помощью люминесцентного анализа можно определить качество пищевых продуктов.
Химические методы в санитарно-гигиенических исследованиях используются при изучении химического состава воздуха, воды, пищевых продуктов; они широко применяются для определения ядохимикатов, различных синтетических веществ и разнообразных токсичных веществ, поступающих в биосферу. Важнейшей особенностью химических методов является их высокая чувствительность, позволяющая определить в некоторых случаях миллионные доли миллиграмма вещества на единицу объема воздуха, воды или единицу массы какого-либо продукта. С помощью химических методов при санитарно-гигиенических исследованиях определяются примеси, не свойственные природному составу среды, которые могут оказывать неблагоприятное воздействие на организм, служить показателем санитарного неблагополучия изучаемого объекта (наличие в воздухе оксида углерода, диоксида серы и др.).
Под биологическими методами следует понимать исследования объектов окружающей среды, в процессе которых определяется наличие микро– и макроорганизмов и веществ животного и растительного происхождения, характеризующих санитарное состояние объекта.
Примером подобного анализа может служить биологическое исследование воды, продуктов питания.
Биологические методы в практике санитарно-гигиенических исследований как разновидность биологического исследования часто имеют первостепенное значение, поскольку определяют не только общую обсемененность изучаемого объекта, но также выделяют и идентифицируют санитарно-показательные микроорганизмы.
Эпидемиологический метод – совокупность методик изучения состояния здоровья населения под влиянием различных эндогенных (генетических, возрастных и др.) или экзогенных (социальных, природных) факторов. Эпидемиологический метод позволяет изучать здоровье коллектива или же населения города, района, области путем анализа определенных учетных и отчетных медицинских документов, проведения медицинских осмотров в амбулаторных и стационарных условиях с последующим расчетом показателей, характеризующих здоровье населения. При этом динамические наблюдения за здоровьем определенного контингента называются продольными, а одномоментные – поперечными. В зависимости от направленности наблюдения продольные исследования разделяются на ретроградные, изучающие произошедшие события, или перспективные, направленные на события, которые будут происходить.
Санитарно-статистические методы изучения здоровья населения основываются на данных официальных документов и отчетов, содержащих информацию о состоянии здоровья населения. При этом учитывают такие показатели, как заболеваемость, демографические показатели естественного движения населения, физическое развитие, уровни инвалидности, смертности и т. п. Санитарная статистика широко использует разнообразные методы математического анализа.
Клинические методы исследования широко используют для оценки состояния здоровья населения, подвергающегося воздействию различных факторов окружающей среды. Клинические методы применяют не только для определения выраженных нарушений, но и для выявления показателей преморбидных состояний у практически здоровых людей, используя при этом биохимические, иммунологические и другие тесты, отражающие состояние различных органов и систем человека.
Метод гигиенического эксперимента ставит своей целью в натурных или лабораторных условиях изучить влияние различных факторов окружающей среды на организм человека или животных.
Метод лабораторного эксперимента позволяет наиболее четко моделировать процессы и явления для выяснения их значения для здоровья человека. Примером может служить изучение на лабораторных установках процессов накопления в почве и растениях вредных химических веществ.
Важнейшее значение имеет оценка гигиенической и медико-социальной эффективности проведенных оздоровительных мероприятий. Оценка гигиенической эффективности путем сравнения параметров факторов окружающей среды до и после осуществления предложенных мероприятий позволяет в случае успеха использовать эти предложения в практике на других аналогичных объектах. Медико-социальная эффективность выражается в улучшении самочувствия работающего и проживающего в этих условиях населения, снижении заболеваемости, повышении успеваемости учащихся, работоспособности, выносливости в условиях эксперимента. В ряде случаев, кроме основных показателей эффективности, отражающих улучшение окружающей среды и состояния здоровья населения, удается определить и экономический эффект в результате снижения выплат по листкам нетрудоспособности, повышения производительности труда и т. п.
Санитарная охрана воздушного бассейна населенных мест
Химический состав воздуха, его влияние на организм человека
Воздушная среда, составляющая земную атмосферу, представляет собой смесь газов. Сухой атмосферный воздух содержит:
1) кислорода – 20,95 %;
2) азота – 78,09 %;
3) диоксида углерода – 0,03 %.
Кроме того, в атмосферном воздухе содержатся аргон, гелий, неон, криптон, водород, ксенон и другие газы. В небольшом количестве в атмосферном воздухе присутствуют озон, оксид азота, йод, метан, водяные пары.
Кислород по биологической роли – самая важная составная часть воздуха. В природе постоянно происходит потребление кислорода при дыхании человека и животных. Расходуется кислород на процессы окисления и горения. Несмотря на значительный расход кислорода, его содержание в воздухе практически не изменяется, так как в растительном мире постоянно идет процесс ассимиляции углекислого газа и выделение кислорода. В результате процессов фотосинтеза в атмосферу поступает около 5 X 1014 т кислорода в год, что примерно соответствует его потреблению. Под действием солнечных лучей молекулы воды распадаются также с образованием кислорода.
Организм очень чувствителен к недостатку кислорода. Снижение его содержания в воздухе до 17 % приводит к учащению пульса, дыхания. Содержание в воздухе 7–8 % кислорода несовместимо с жизнью. Увеличение содержания кислорода до 100 % при нормальном давлении человеком переносится легко. С повышением давления до 405,3 кПа (4 атм) происходят местные поражения тканей легких и функциональные нарушения ЦНС. Вместе с тем при содержании кислорода до 40–60 % и давлении до 303,94 кПа (3 атм) в барокамере наблюдается улучшение усвоения кислорода тканями, отмечается нормализация нарушенных функций.
Под влиянием коротковолнового УФ-излучения с длиной волны менее 200 нм молекулы кислорода диссоциируют с образованием атомарного кислорода. Атомы кислорода присоединяются к нейтральной молекуле кислорода, образуя озон. Одновременно с образованием озона происходит его распад. Общебиологическое значение озона велико, поскольку он поглощает коротковолновое УФ-излучение, оказывающее губительное действие на биологические объекты. Кроме того, он поглощает длинноволновое ИК-излучение, исходящее от Земли, и тем самым предотвращает охлаждение ее поверхности.
Важным составным элементом атмосферного воздуха является диоксид углерода. В атмосферу он выделяется за счет дыхания человека и животных, процессов горения, гниения и брожения. Ассимилируется диоксид углерода растениями в процессе фотосинтеза.
Диоксид углерода играет большую роль в жизнедеятельности животных и человека, являясь физиологическим возбудителем дыхательного центра. При увеличении содержания его во вдыхаемом воздухе до 4 % отмечаются головная боль, шум в ушах, сердцебиение, возбужденное состояние; при 8 % наступает смерть.
В гигиеническом отношении содержание диоксида углерода является показателем, по которому судят о степени чистоты воздуха в жилых и общественных зданиях. В обычных условиях при естественной вентиляции помещения и инфильтрации наружного воздуха через поры строительных материалов содержание диоксида углерода в воздухе жилых помещений не превышает 0,2 %. Предельно допустимой концентрацией диоксида углерода в воздухе жилых и общественных зданий считается 0,1 %.
Основную массу атмосферы составляет азот. Он принадлежит к индифферентным газам и играет роль разбавителя кислорода. При избыточном давлении (4 атм) азот может оказать наркотическое действие.
Азот атмосферы под влиянием электрических разрядов превращается в окислы азота, которые с осадками поступают в почву, где превращаются в органические соединения. При разложении органических веществ азот восстанавливается и снова поступает в атмосферу. Азот воздуха усваивается сине-зелеными водорослями и некоторыми видами бактерий почвы.
Другие составляющие воздуха – так называемые инертные газы (аргон, неон, гелий, ксенон, криптон и др.) в обычных условиях физиологически индифферентны.
Организм человека ежесуточно потребляет большое количество воздуха, который включается в процессы жизнеобеспечения (взрослый человек потребляет до 20 м3 в сутки). При загрязнении атмосферы в этом воздухе могут содержаться значительные дозы вредных веществ, способные оказать влияние на состояние и функции жизненно важных систем и органов. Воздействия эти могут быть многообразными в зависимости от вида загрязнителя, его концентрации в воздухе, длительности и периодичности воздействия.
Атмосферные загрязнители
По усредненным данным ВОЗ в структуре основных факторов риска, оказывающих влияние на здоровье населения, около 20 % приходится на различные виды загрязнения окружающей среды.
Атмосферные загрязнения вызывают острые и хронические отравления, рост общей заболеваемости, развитие специфических и отдаленных последствий. Описаны случаи острых отравлений, обусловленных так называемыми токсическими туманами, повлекших резкое увеличение случаев смерти (долина р. Маас, 1930 г.; Бельгия, Донора, 1948 г., США, Лондон, 1952 г.; Мексика, 1950 г. и др.).
Ослабление организма в результате хронического воздействия атмосферных загрязнений обусловливает рост в 1,5–2 раза случаев заболевания хроническим бронхитом, эмфиземой легких, острыми респираторными заболеваниями, хроническими ринитами, отитами и др. Исследования показывают, что атмосферные загрязнения могут оказывать канцерогенное и сенсибилизирующее действие. Атмосферные загрязнения ухудшают общесанитарные условия жизни. Так, интенсивное запыление воздуха снижает прозрачность атмосферы, что отражается на естественном освещении, уровне УФ-облучения. Запыленность способствует туманообразованию. Туманы в свою очередь способствуют росту уличного травматизма, угнетающе действуют на психику и самочувствие людей.
К распространенным газообразным атмосферным загрязнениям относятся соединения серы, сероводород, окислы азота, углеводороды, альдегиды, сажа и др.
Наиболее сильно загрязняет воздух промышленное производство. Источники загрязнения – теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате снижения топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов.
В основном существуют три основных источника загрязнения атмосферы – промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в зависимости от места.
Влияние на атмосферный воздух деятельности предприятий
Наиболее мощным источником загрязнения воздушной среды является промышленность (в частности, крупные теплоэлектростанции). Их выбросы составляют до 27 % от всех выбросов в атмосферу. В результате сжигания топлива в воздух выбрасываются зола, сажа, всевозможные газообразные продукты. По объему вредных выбросов далее следуют предприятия черной и цветной металлургии (24 и 10 % соответственно); металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух окислы азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. На долю автотранспорта в городах приходится свыше 60 % от всей суммы вредных выбросов.
Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов. Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы образуются другие, вторичные признаки загрязнения.
Основными источниками пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 70 % ежегодно добываемого твердого и жидкого топлива. Основными вредными примесями пирогенного происхождения являются следующие.
1. Оксид углерода, получаемый при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 250 000 000 т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствующим повышению температуры на планете и созданию парникового эффекта.
2. Сернистый ангидрид выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд (до 70 000 000 т в год). Часть соединений серы выделяется при горении органических остатков в горно-рудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 65 % от общемирового выброса.
3. Серный ангидрид образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раст вор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 1 км от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшимися в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.
4. Сероводород и сероуглерод поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.
5. Окислы азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество окислов азота, поступающих в атмосферу, составляет 20 000 000 т в год.
6. Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторсодержащие вещества поступают в атмосферу в виде газообразных соединений – фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.
7. Соединения хлора поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлорсодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией.
В металлургической промышленности при выплавке чугуна и при переработке его в сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 1 т передельного чугуна выделяются 2,7 кг сернистого газа и 4,5 кг пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода.
К атмосферным загрязнителям относятся углеводороды (насыщенные и ненасыщенные), включающие от 1 до 13 атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц.
Аэрозольное загрязнение атмосферы
Аэрозоли – это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе.
Аэрозоли образуются в воздухе при многих производственных процессах в виде пылей, дымов, туманов. Это в первую очередь пыль минеральная (кварцевая, силикатная, угольная и т. д.), а также пыль различных металлов или дымы или пыли окислов металлов и многие органические аэрозоли. Аэрозоли представляют собой смесь частиц разного размера. При дыхании эти частицы попадают в дыхательные пути. Дальнейшее воздействие на организм определяется свойствами составляющих компонентов аэрозоля и их размерами. Основными источниками загрязнения воздуха являются промышленные производства, энергетические установки и транспорт.
Таблица 1
Пылеобразование при различных производственных процессах
Поступление частиц в воздух в результате деятельности человека в основном происходит именно в местах расселения и особенно в больших и крупных городах. Аэрозольные частицы от этих источников отличаются большим разнообразием. Сюда относятся такие виды загрязнений атмосферы, как зола, пыль, окись цинка, силикаты, хлорид свинца, соединения серы (серный и сернистый ангидрид, сероводород, меркаптаны), органические соединения (альдегиды, углеводороды, смолы), соединения азота (окись и двуокись азота, аммиак), соединения кислорода (окись и двуокись углерода, озон), галогены (фтористый и хлористый водород), радиоактивные газы. Кроме того, в атмосферу отдельных городов могут поступать выбросы в виде хлора, оксидов металлов (железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена), асбест соответственно специфике промышленного производства. Эти выбросы образуются на энергетических установках и при сжигании топлива, на металлургических, машиностроительных, коксохимических, нефтеперерабатывающих и химических предприятиях, при работе двигателей автомобильного и авиационного транспорта.
Твердые взвеси образуются при сжигании различных видов топлива, дезинтеграции твердых материалов, при транспортировке пылящих материалов. Крупные фракции в малоподвижном воздухе быстро оседают, а мелкие способны удерживаться в слоях атмосферы более 20 дней.
Предприятия черной металлургии, доменный газ которых содержит до 30 % окиси углерода, являются значительными источниками загазованности атмосферы. Дополнительным источником выбросов является мартеновское производство (60 кг СО на 1 т стали). Коксохимическое производство сопряжено с выбросами в воздушное пространство коксового газа, содержащего до 7,5 % окиси углерода.
Загрязнение атмосферы транспортом
Средства железнодорожного, водного, воздушного транспорта, наряду с городским автотранспортом, являются источником интенсивных выбросов в атмосферу окиси углерода, углеводородов, окислов азота, сернистого ангидрида и других химических соединений. Всего с выхлопными газами в воздух поступает около 200 вредных примесей. По данным Л. Е. Беспалько с соавторами (1974), выхлопные газы судов, находящихся в порту, могут быть значительным загрязнителем атмосферного воздуха. Двигатели судов потребляют до 1–2 т топлива в час.
Автотранспорт.
Городской транспорт с двигателями внутреннего сгорания является интенсивным источником загрязнения воздушного бассейна города окисью углерода. Окись углерода составляет до 12 % объема отработанных газов карбюраторных двигателей и до 0,5 %) объема выхлопа дизельных двигателей. Дизельные двигатели выбрасывают в отработанных газах большое количество сажи (10–1100 мг/куб. м), бензиновые – до 40 мг/куб.м. Выбросы сажи возрастают при работе двигателей с большой нагрузкой при перегазовках. На поверхности частиц сажи конденсируются смолистые вещества типа без(а)пирена. Автомобили ежегодно выбрасывают в атмосферу порядка 280 млн т окиси углевода, более 56 млн т углеводородов и более 28 млн т окиси азота. По данным И. Л. Варшавского, Р. В. Малова (1968), в отработанных газах автомобилей с бензиновым двигателем содержится до 0,8 % окислов азота, с дизельным двигателем – до 0,5 %. Выбросы автомобилей содержат различные количества органических веществ в виде углеводородов, альдегидов, полициклических ароматических углеводородов.
Наряду с выбросами взвесей и газов двигателями все виды транспорта создают по маршруту своего следования очаги пыления, поднимая в воздух значительное количество твердых частиц с поверхности проезжей части. Максимальные значения пыли определяются в районах с интенсивным движением автотранспорта в сухую безветренную погоду летом, особенно в местах с неудовлетворительным техническим состоянием дорог.
Создаваемые в городах системы движения в режиме «зеленой волны», существенно сокращающие число остановок транспорта на перекрестках, призваны сократить загрязнение атмосферного воздуха в городах. Большое влияние на качество и количество выбросов примесей оказывает режим работы двигателя (в частности, соотношение между массами топлива и воздуха, момент зажигания, качество топлива, отношение поверхности камеры сгорания к ее объему и др.). При увеличении отношения массы воздуха и топлива, поступающих в камеру сгорания, сокращаются выбросы оксида углерода и углеводородов, но возрастает выброс оксидов азота. Несмотря на то что дизельные двигатели более экономичны, таких веществ, как СО, HmCn, NO, выбрасывают не более, чем бензиновые, они существенно больше выбрасывают дыма (преимущественно несгоревшего углерода), который к тому же обладает неприятным запахом, создаваемым некоторыми несгоревшими углеводородами. В сочетании же с создаваемым шумом дизельные двигатели не только сильнее загрязняют среду, но и воздействуют на здоровье человека гораздо в большей степени, чем бензиновые.
Самолеты.
Наибольший объем выбросов вредных веществ в атмосферу в гражданской авиации (86 %) приходится на двигатели при эксплуатации воздушных судов. В 1999 г., по расчетно-экспертным оценкам, валовые выбросы вредных веществ составили 140 тыс. т, из них 62 тыс. т оксидов азота, 52 тыс. т оксида углерода, по 13 тыс. т несгоревших углеводородов и оксидов серы.
Принято рассматривать выбросы вредных веществ в атмосферу до высоты 900 м, влияющие на качество воздуха в районах аэропортов, и выбросы на высотах более 900 м, оказывающие воздействие на атмосферу. В приземных слоях атмосферы выбросы вредных веществ происходят при выполнении самолетами взлетно-посадочных операций в районе аэропортов и при опробовании двигателей в процессе технического обслуживания. По оценкам, объем этих выбросов в 1999 г. составил 32 тыс. т (23 % общего объема выбросов), из них 18 тыс. т оксида углерода, 6,5 тыс. т несгоревших углеводородов, 6,3 тыс. т оксидов азота и 1,2 тыс. т оксидов серы. Выбросы вредных веществ в атмосферу на высотах более 900 м составили 108 тыс. т (77 % общего объема выбросов), в том числе 56 тыс. т оксидов азота, 33 тыс. т оксида углерода, 13 тыс. т оксидов серы, 6 тыс. т несгоревших углеводородов.
Воздействие стационарных источников загрязнения окружающей среды в аэропортах характеризуется загрязнением воздуха, воды и почвы химическими веществами. Кроме того, эти объекты являются источниками физических воздействий: шума, вибрации, теплового и электромагнитного излучений. К стационарным источникам загрязнения атмосферного воздуха, водных ресурсов и почвы относятся: трубы котельных и дизельных станций, вентиляционные системы производственных и вспомогательных цехов и участков, емкости на складах ГСМ и централизованной заправки самолетов, мусоросжигательные установки, малярные и моечные цеха и участки, другие источники. Аэропорты являются источниками образования различных твердых и жидких отходов потребления и производства. Объемы накопления твердых отходов в 1999 г. составили: бытовые отходы – 90 тыс. т; производственные отходы – 30 тыс.т. По данным международных, зарубежных и отечественных исследований, влияние авиации на загрязнение атмосферного воздуха в целом невелико, но в зоне аэропортов с большой интенсивностью движения эксплуатация воздушных судов может стать причиной ухудшения качества воздуха до уровня, превышающего ПДК, особенно по оксидам азота.
Явление фотохимического тумана (смога)
При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия – расположение слоя более холодного воздуха под теплым, что препятствует передвижению воздушных масс и задерживает перенос примесей вверх. В результате вредные выбросы сосредоточиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее не известного в природе фотохимического тумана.
Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях – наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ.
Такие условия создаются чаще в июне – сентябре, и реже – зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота – в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги – нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной систем и часто бывают причинами преждевременной смерти городских жителей с ослабленным здоровьем.
Влияние загрязнения химическими соединениями атмосферного воздуха на организм и среду обитания человека
Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека. Эти вещества попадают в организм человека преимущественно через систему дыхания. Органы дыхания страдают от загрязнения непосредственно, поскольку около 50 % частиц примеси радиусом 0,01–0,1 мкм, проникающих в легкие, осаждаются в них.
Проникающие в организм частицы вызывают токсический эффект, поскольку они:
1) токсичны (ядовиты) по своей химической или физической природе;
2) служат помехами для одного или нескольких механизмов, с помощью которых нормально очищается респираторный (дыхательный) тракт;
3) служат носителями поглощенного организмом ядовитого вещества.
По степени воздействия на организм вредные вещества подразделяют на четыре класса опасности:
1) вещества чрезвычайно опасные;
2) вещества высокоопасные;
3) вещества умеренно опасные;
4) вещества малоопасные.
Класс опасности вредных веществ устанавливают в зависимости от норм и показателей, указанных в таблице 2.
Таблица 2
Критерии класса опасности химического вещества
Отнесение вредного вещества к классу опасности производят по показателю, значение которого соответствует наиболее высокому классу опасности.
В некоторых случаях воздействие одних загрязняющих веществ в комбинации с другими приводит к более серьезным расстройствам здоровья, чем воздействие каждого из них в отдельности. Большую роль играет продолжительность воздействия. Реакция организма зависит от его индивидуальных особенностей, возраста, пола, состояния здоровья и др… При острых и хронических воздействиях атмосферных загрязнений наблюдаются различные сдвиги в заболеваемости, смертности, снижении рабостоспособности. Эпизоды острого воздействия на протяжении пяти дней сконцентрированных выбросов промышленных предприятий в 1930 году в Бельгии, в долине реки Маас, когда воздействие тумана с запахом сернистого ангидрида привело к заболеванию нескольких сот человек, из которых 60 человек умерло. Погибли в основном люди преклонного возраста и больные хроническими заболеваниями сердца и легких. В США в 1945 и 1948 годах возникали сходные ситуации, когда в результате инверсии выбросов с металлургических предприятий в долине, где расположен г. Донора, пострадала половина из 12 тыс. населения за пять дней воздействия токсического тумана (1948 г.). Тогда умерло 17 человек. В декабре 1952 года наблюдался токсический туман в долине реки Темзы близ Лондона. У большого числа жителей города появились симтомы поражения дыхательных путей. За две недели в период тумана погибло на 4000 человек больше, чем в другие годы в аналогичный период. Частым заболеванием, предшествующим смерти, был бронхит; возникали и другие признаки интоксикации (одышка, цианоз, умеренное повышение температуры, приступы рвоты и т. п.).
К основным загрязнителям, содержащимся в воздушной среде практически всех городов, относятся взвешенные вещества, диоксид азота, диоксид серы, окиси углерода, фенол.
Оксид углерода.
Окись углерода обладает большим сродством к гемоглобину и легко вступает с ним в соединение, образуя карбоксигемоглобин. При содержании карбоксигемоглобина в крови 4 % и более наблюдаются функциональные сдвиги в организме и повышенная опасность для людей, страдающих заболеваниями сердечно-сосудистой системы. Окись углерода взаимодействует с дыхательными ферментами, миоглобином, железом плазмы, нарушает углеводный и фосфорный обмен. Проявляется:
1) ухудшением остроты зрения и способности оценивать длительность интервалов времени;
2) нарушением некоторых психомоторных функций головного мозга (при содержании 2–5 %);
3) изменениями деятельности сердца и легких (при содержании более 5 %);
4) головными болями, сонливостью, спазмами, нарушениями дыхания и смертностью (при содержании 10–80 %).
Группа риска при воздействии оксида углерода состоит из лиц с заболеваниями коронарных сосудов, цереброваскулярной и периферической сосудистых систем, больных анемией, заболеваниями легких, а также людей, испытывающих повышенные физические нагрузки. В концентрациях 9–16 мг/м3 окись углерода способна привести к повышению смертности от инфаркта миокарда.
При хроническом воздействии окиси углерода возникает головная боль, головокружение, быстрая утомляемость, эмоциональная неустойчивость, боли в области сердца. Наиболее выражены нарушения деятельности нервной и сердечно-сосудистой систем. Тахикардия. Повышение артериального давления. Адинамия, сонливость.
Диоксид серы и серный ангидрид.
Диоксид серы (SO2) и серный ангидрид (SO3) в комбинации с взвешенными частицами и влагой оказывают наиболее вредное воздействие на человека. Больные престарелого возраста, длительно болеющие дети, лица, страдающие респираторными заболеваниями, астмой, особенно чувствительны к воздействию диоксида серы. Концентрации диоксида серы на уровне 0,25 мг/м3 вызывают ухудшение их самочувствия. Характерной особенностью сернистого ангидрида является раздражающее действие на слизистые оболочки верхних дыхательных путей в концентрациях 16–32 мг/м3 и на слизистую глаз в концентрации более 50 мг/м3. Болезненные ощущения, вызванные раздражающим действием газа в концентрации 120 мг/м3, человек выдерживает 3 мин, в концентрации 300 мг/м3 – 1 мин. Хроническое воздействие ангидрида на органы дыхания способствует возникновению бронхитов, в ряде случаев с астматическими явлениями, а также других респираторных заболеваний.
Сероводород – бесцветный газ, плотностью 1,54 г/л, с запахом тухлых яиц, активный восстановитель. Запах сероводорода ощущается при концентрациях 0,04–0,10 мг/м3. При больших концентрациях действует как сильный нервный яд. При действии 10 000 мг/м3 и выше отравление может развиться очень быстро (судороги и потеря сознания со смертельным исходом от остановки дыхания или паралича сердца). Блокирует дыхательные ферменты в результате реакции с железом, что ведет к тканевой аноксии. Раздражающе действует на слизистую органов дыхания и глаз. При концентрации 20 мг/м3 наблюдаются раздражение и заболевания конъюнктивы и роговицы.
Наиболее чувствительными в отношении диоксида азота являются лица, страдающие бронхиальной астмой, у которых при концентрациях 0,19 мг/м3 наблюдается явление выраженного бронхоспазма. Повышенную чувствительность к этому веществу проявляют также дети и лица, страдающие хроническими заболеваниями органов дыхания.
Оксиды азота (прежде всего ядовит диоксид азота NO2), соединяющиеся при участии ультрафиолетовой солнечной радиации с углеводородами (среди них наибольшей реакционной способностью обладают олефины), образуют пероксилацетилнитрат (ПАН) и другие фотохимические окислители, в том числе пероксибензоилнитрат (ПБН), озон (О3), перекись водорода (H2O2), диоксид азота. Эти окислители – основные составляющие фотохимического смога, повторяемость которого велика в сильно загрязненных городах, расположенных в низких широтах северного и южного полушарий (Лос-Анджелес, в котором около 200 дней в году отмечается смог, Чикаго, Нью-Йорк и другие города США; ряд городов Японии, Турции, Франции, Испании, Италии, Африки и Южной Америки). Оценка скорости фотохимических реакций, приводящих к образованию ПАН, ПБН и озона, показывает, что в ряде южных городов бывшего Советского Союза летом в околополуденные часы (когда велик приток ультрафиолетовой радиации) эти скорости превосходят значения, начиная с которых отмечается образование смога. Так, в Алма-Ате, Ереване, Тбилиси, Ашхабаде, Баку, Одессе и других городах при наблюдаемых уровнях загрязнения воздуха максимальная скорость образования О3 достигла 0,70–0,86 мг/(м3/ч), в то время как смог возникает уже при скорости 0,35 мг/(м3/ч). Наличие в составе ПАН диоксида азота и йодистого калия придает смогу коричневый оттенок. При концентрации ПАН выпадает на землю в виде клейкой жидкости, губительно действующей на растительный покров.
Все окислители (в первую очередь ПАН и ПБН) сильно раздражают и вызывают воспаление глаз, а в комбинации с озоном раздражают носоглотку, приводят к спазмам органов грудной клетки, а при высокой концентрации (свыше 3–4 мг/м3) вызывают сильный кашель и ослабляют возможность на чем-либо сосредоточиться. В городах вследствие постоянно увеличивающегося загрязнения воздуха неуклонно растет число больных, страдающих такими заболеваниями, как хронический бронхит, эмфизема легких, различные аллергические заболевания и рак легких. В Великобритании 10 % случаев смертельных исходов приходится на хронический бронхит, при этом 21 % населения в возрасте 40–59 лет страдает этим заболеванием. В Японии в ряде городов до 60 % жителей болеют хроническим бронхитом, симптомами которого являются сухой кашель с частыми отхаркиваниями, последующее прогрессирующее затруднение дыхания и сердечная недостаточность. Заболевание связано с длительным раздражением бронхов различными вредными факторами (сернистым ангидридом, окислами азота и другими химическими соединениями). В результате происходят изменения функции и морфологии бронхиальных желез и слизистой бронхиального дерева, интоксикация организма, присоединение инфекции. Формируется хронической воспалительный процесс бронхов с вовлечением сердечно-сосудистой системы и других органов.
Одним из наиболее распространенных веществ в воздушной среде городов России является бензпирен, который содержится в выбросах алюминиевых, сталеплавильных производств, энергетических установок, нефтеперерабатывающих заводов, автотранспорта. Бензпирен – канцероген, отнесен к группе 1 в соответствии с «Перечнем веществ, продуктов производственных процессов и природных факторов, канцерогенных для человека» (Гигиенические нормативы (ГН) 1.1.029-95, утвержденные Госсанэпиднадзором России).
Бактериологическое загрязнение воздушной среды
Биологические объекты, находящиеся в воздухе во взвешенном состоянии, различны: бактерии, вирусы, споры плесневых грибов, дрожжевые грибы, цисты простейших, споры мхов и др. При этом воздух не является благоприятной средой для размножения микроорганизмов. Основным источником загрязнения воздуха является почва.
Содержание микроорганизмов в воздухе колеблется как в течение суток, так и в различные сезоны года. В холодный период года воздух менее загрязнен микроорганизмами, а летом наблюдается более высокое их содержание, что связано с высыханием верхних слоев почвы и усиленным поступлением ее частичек в воздух.
Бактериальная обсемененность в городах может достигать 30000–40000 в 1 м3, в то время как в зеленой пригородной зоне – около 1000 в 1 м3. Над океанами и снежными вершинами гор воздух почти стерилен.
Воздушная среда является путем передачи многих аэрогенных инфекций, возбудители которых обладают достаточной стойкостью. Через воздух распространяются возбудители коклюша, дифтерии, кори, скарлатины, гриппа.
В России за последние годы на фоне стабилизации инфекционной заболеваемости по отдельным нозологическим видам наблюдаются увеличение интенсивности вспышек острых кишечных инфекций и рост заболеваемости вирусной этиологии. Инфекции сегодня занимают второе-третье место среди прочих болезней населения нашей планеты. Известно, что нозологическая самостоятельность любого заболевания определяется прежде всего этиологическим агентом. При выполнении этого требования к инфекционным заболеваниям относятся 60–70 % всей заболеваемости населения. При этом среди десяти заболеваний, являющихся основными причинами смерти, семь имеют инфекционную природу.
Воздушным путем передаются такие заболевания, как натуральная оспа, туляремия, сибирская язва, туберкулез и др. Установлено, что во время чихания образуется до 40 000 мелких капелек, содержащих микроорганизмы. Инфицированные капельки, находясь во взвешенном состоянии, могут распространяться на значительные расстояния и представлять эпидемиологическую опасность.
Уровень бактериального загрязнения воздуха в помещениях зависит от воздухообмена, санитарного состояния и др. Принято считать, что атмосферный воздух является чистым в бактериологическом отношении, если число бактерий летом не превышает 750, а зимой – 150 в 1 м3.
Гигиенические требования к качеству атмосферного воздуха населенных мест
Основами регулирования качества атмосферного воздуха населенных мест являются гигиенические нормативы – предельно допустимые концентрации (ПДК) атмосферных загрязнений химических и биологических веществ, соблюдение которых обеспечивает отсутствие прямого или косвенного влияния на здоровье населения и условия его проживания. ПДК – такие концентрации, которые не оказывают на человека и его потомство прямого или косвенного воздействия, не ухудшают их работоспособности, самочувствия, а также санитарно-бытовых условий жизни людей.
Для отдельных веществ допускается использование ориентировочных безопасных уровней воздействия (ОБУВ), для которых устанавливаются сроки их действия.
В жилой зоне и на других территориях проживания должны соблюдаться ПДК и 0,8 ПДК – в местах массового отдыха населения, на территориях размещения лечебно-профилактических учреждений для длительного пребывания больных и центров реабилитации.
Предотвращение появления запахов, раздражающего действия и рефлекторных реакций у населения, а также острого влияния атмосферных загрязнений на здоровье в период кратковременных подъемов концентраций обеспечивается соблюдением максимальных разовых ПДК (ПДК мр).
Предотвращение неблагоприятного влияния на здоровье населения при длительном поступлении атмосферных загрязнений в организм обеспечивается соблюдением среднесуточных ПДК (ПДК ее).
Для веществ, имеющих только среднесуточные ПДК, при использовании расчетных методов определения степени загрязнения атмосферы используются ПДК ее (табл. 3).
Таблица 3
ПДК загрязняющих веществ в атмосферном воздухе, принятые в России, и рекомендации ВОЗ
Соблюдение для жилых территорий ПДК, а для зон массового отдыха 0,8 ПДК обеспечивается с учетом суммации биологического действия веществ или продуктов их трансформации в атмосфере, а также загрязнения атмосферы за счет действующих, строящихся и намеченных к строительству объектов, являющихся источниками загрязнения атмосферного воздуха.
Состояние загрязнения воздуха несколькими веществами, наблюдаемыми в атмосфере города, оценивается с помощью комплексного показателя – индекса загрязнения атмосферы (ИЗА). Для этого нормированные на соответствующие значения ПДК и средние концентрации различных веществ с помощью несложных расчетов приводят к величине концентраций сернистого ангидрида, а затем суммируют.
Степень загрязнения воздуха основными загрязняющими веществами находится в прямой зависимости от промышленного развития города. Наибольшие максимальные концентрации характерны для городов с численностью населения более 500 000 жителей. Загрязнение воздуха специфическими веществами зависит от вида промышленности, развитой в городе. Если в крупном городе размещены предприятия нескольких отраслей промышленности, то создается очень высокий уровень загрязнения воздуха, однако проблема снижения выбросов многих специфических веществ до сих пор остается нерешенной.
Профилактика загрязнения и оздоровление атмосферного воздуха
Охрана и оздоровление воздушного бассейна городов обеспечиваются комплексом защитных мер, в основе которых находится система государственных законодательных актов и нормативных регламентирующих документов по планировке, застройке и благоустройству населенных мест. Важнейшими документами в этой области являются следующие: Федеральный закон «О санитарно-эпидемиологическом благополучии населения» (с изменениями от 30 декабря 2001 г., 10 января, 30 июня 2003 г.), принятый Государственной Думой 12 марта 1999 г., Санитарно-эпидемиологические правила и нормативы (СанПиН) 2.1.6.1032-01 «Гигиенические требования к обеспечению качества атмосферного воздуха населенных мест», утвержденные постановлением Минздрава России от 17 мая 2001 г. № 14, и др.
В соответствии с законодательно-нормативными требованиями для защиты воздушного бассейна от загрязнения осуществляются меры конструктивно-технологического, планировочного и санитарно-технического характера.
Меры конструктивно-технологического характера включают разработку и применение технологий, обеспечивающих максимальное использование сырья, промежуточных продуктов и отходов производства по принципу безотходной или малоотходной технологии. К ним относятся также рекуперация растворителей, герметизация производственного оборудования и работа отдельных трактов в условиях разряжения, сокращение неорганизованных выбросов, замена сухих процессов мокрыми, применение бездымного, малодымного и малосернистого топлива и т. д.
Меры планировочного характера включают выбор под застройку хорошо проветриваемых площадок, свободных от явлений инверсии и кумуляции загрязнений; правильное взаиморасположение источников выбросов и жилых зон с учетом направлений розы ветров; создание санитарно-защитных зон между источниками выбросов и жилой застройкой.
Санитарно-защитные зоны в зависимости от ожидаемого характера и дальности распространения загрязнений могут иметь различную протяженность. В соответствии с СанПиН 2.2.1./2.1.1.1031-01 «Санитарно-защитные зоны» установлены для предприятий различные классы вредности по характеру загрязнения атмосферного воздуха. Таких классов выделено пять.
Размер санитарно-защитной зоны исчисляется от мест выделения загрязнений в атмосферу до жилых и общественных зданий, до границ территорий детских, лечебных, оздоровительных учреждений, сооружений спорта и отдыха. В пределах санитарно-защитной зоны большего класса вредности могут располагаться предприятия меньшего класса вредности с аналогичными вредными выделениями.
Меры санитарно-технического характера имеют целью уменьшение выброса в атмосферу взвешенных и газообразных загрязнителей, образование которых характерно для данного уровня производственной технологии. По задачам эти меры разделяются на меры, направленные на извлечение взвешенных веществ, и на меры, предусматривающие очистку выбросов в атмосферу от газообразных и парообразных загрязнителей. В первом случае применяются осадительные, инерционные и центробежные сооружения с методами сухой и мокрой фильтрации и электрофильтрации.
Очистка от газообразных и парообразных загрязнителей многообразна и осуществляется с учетом особенностей технологического процесса.
Борьба с загрязнениями воздушного бассейна автомобильным транспортом осуществляется средствами технического, планировочного и организационного характера.
К техническим мерам относятся регулировка двигателей до оптимального соотношения горючей смеси в санитарном отношении, применение газообразного топлива, использование газовых катализаторов и др.
К планировочным мерам защиты воздуха относятся следующие – функциональное деление транспортных магистралей города с выводом интенсивных автотранспортных потоков за пределы жилых районов, а транзитных – за пределы города; рациональная застройка улиц с применением газозащитных полос в виде зеленых насаждений, устройство транспортных развязок на основных магистралях с сооружением тоннелей и др.
Организационные меры защиты от загрязнения воздуха автотранспортом включают рациональное распределение транспортных потоков по их интенсивности, составу, времени и направлению движения, внедрение регулирования движения по принципу зеленой волны, систему контроля технического состояния транспортных средств, наблюдение за состоянием дорожных покрытий и др.
Гигиена воздуха рабочей зоны
Влияние загрязнения производственного характера на организм работающих
Среди веществ, наиболее часто являющихся причинами острых и хронических профзаболеваний, отмечаются оксид углерода (10,04 %), хлор (8,26 %), мышьяковистый водород (6,69 %), аммиак (6,1 %), свинец и его неорганические соединения (7,58 %), ртуть металлическая (6,02 %), марганец в сварочных аэрозолях (5,13 %), сероводород (3,79 %), водород фтористый (4,24 %), ксилол (3,12 %), сероуглерод (2,9 %).
Установлено, что у людей, профессионально имеющих дело с асбестом, повышена вероятность раковых заболеваний бронхов и диафрагмы, разделяющей грудную клетку и брюшную полость. Бериллий оказывает вредное воздействие (вплоть до возникновения онкологических заболеваний) на дыхательные пути, а также на кожу и глаза.
Пары ртути вызывают нарушение работы центральной нервной системы и почек. Поскольку ртуть может накапливаться в организме человека, то в конечном итоге ее воздействие приводит к расстройству умственных способностей.
Известно большое число факторов окружающей среды, которые вредно влияют на структуру и функцию щитовидной железы, увеличивая риск ее заболеваний (недостаток йода, серосодержащие органические вещества (тиоцианат, изотиоцианат), флавоноиды, полициклические ароматические углеводороды, полигидроксифенолы и производные фенола, фталевые эфиры и метаболиты, радиация). Наиболее очевидным эффектом таких факторов является увеличение щитовидной железы. Эти соединения влияют на процессы биосинтеза тиреоидных гормонов (окисления, органификации и конденсации). При обследовании 755 работников химического производства выявлено 35,6 % пациентов с патологией щитовидной железы. По данным Е. В. Веретениной, В. Г. Артамонововой, Р. В. Савинцева (2003), обнаружены снижение свободного тироксина, трийодтиронина, цинка и повышение хрома, свинца, стронция, антител к тиреоглобулину, что позволило сделать вывод о наличии непосредственной связи между дисбалансом микроэлементов, гормональным статусом, увеличением щитовидной железы и стажем работы на вредном производстве.
Обследования работников кабельной промышленности показали, что хлорбензол наряду с отчетливым гемотоксическим действием в концентрациях, превышающих 50–100 мг/м3, вызывает учащение синдрома вегетососудистой дистонии гипертонического типа.
Большую распространенность хронического пылевого бронхита среди рабочих теплоэлектростанций (ТЭС), подвергшихся воздействию сланцезольный пыли, отмечают Л. А. Дрозденко и соавт. (1976), Ю. М. Меркурьев (1977), Г. А. Плисюгина (1981), И. П. Пуссар и соавторы. (1981).
Профессиональный хронический бронхит у рабочих сланцевых ТЭС имеет сравнительно медленное развитие, но может усугубляться воздействием токсических газов (сернистого ангидрида, окиси углерода), имеющих место в рабочей зоне, и неблагоприятных метеорологических условий (Т. О. Татар, (1977), И. П. Пуссар и соавт., (1977), Б. М. Шамардин и соавт., (1977), что нередко приводит к развитию тяжелых форм бронхита с хронической дыхательной и сердечной недостаточностью.
Химические вещества, являющиеся профессиональными вредностями, могут также оказывать влияние на течение и исход болезней, непосредственно не связанных с трудовой деятельностью (сердечно-сосудистой и нервной систем, органов дыхания, кроветворных органов, кожи и др.). Так, НИИ медицины труда РАМН в проведенном эпидемиологическом исследовании установлено, что у работающих в условиях воздействия свинца (концентрация свинца на рабочих местах 0,31–0,39 мг/м3) достоверно повышен риск смерти от сердечно-сосудистой патологии и злокачественных новообразований, причем как у мужчин, так и женщин.
Результаты изучения смертности от общесоматических заболеваний свидетельствуют о том, что у работающих в условиях воздействия нитроэфиров (содержание нитроэфиров в рабочей зоне превышает ПДК до 42 раз), повышен риск смерти от сердечно-сосудистых заболеваний.
Гигиенические требования к качеству воздуха рабочей зоны
Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны – обязательные санитарные нормативы для использования при проектировании производственных зданий, технологических процессов, оборудования и вентиляции, а также для предупредительного и текущего санитарного надзора.
ПДК в воздухе рабочей зоны – такая концентрация вредных веществ, которая в течение 8-часового рабочего дня или рабочего дня другой продолжительности (но не более 41 ч в неделю) не вызывает отклонений в состоянии здоровья работающих, а также не влияет на настоящее и будущее поколения (ГОСТ 12.1.005-88 ССБТ «Общие санитарно-гигиенические требования к воздуху рабочей зоны»).
Гигиеническим законодательством установлены следующие виды ПДК. Среднесменная предельно допустимая концентрация (ПДКсс) – предельная концентрация, усредненная за 8-часовую рабочую смену.
Максимальная предельно допустимая концентрация (ПДКм) – максимальная концентрация, возникающая при ведении технологического процесса, усредненная при отборе проб за промежуток времени, равный 15 мин.
Максимальная предельно допустимая концентрация веществ, опасных для развития острого отравления (с остронаправленным механизмом действия и раздражающим), ПДКмо – максимальная концентрация, которая должна быть измерена за возможно более короткий промежуток времени, насколько позволяет метод определения данного вещества.
Для вредных веществ в воздухе рабочей зоны должны устанавливаться ПДК на основании данных медико-биологических исследований (см. табл. 4).
Вещества с остронаправленным механизмом действия – это вещества, опасные для развития острого отравления при кратковременном воздействии вследствие выраженных особенностей механизма действия (гемолитические, антиферментные (ингибиторы ключевых ферментов, регулирующих дыхательную функцию и вызывающих отек легких, остановку дыхания, ингибиторы тканевого дыхания), угнетающие дыхательный и сосудодвигательные центры и др.).
Для низколетучих, но активно проникающих через кожу вредных веществ должны устанавливаться тесты экспозиции.
На период, предшествующий проектированию производств, должны временно устанавливаться ориентировочные безопасные уровни воздействия (ОБУВ) путем расчета по физико-химическим свойствам или путем интерполяций и экстраполяции в рядах, близких по строению соединений или по показателям острой опасности.
В отдельных случаях по согласованию с органами государственного санитарного надзора допускается при проектировании производства использование ОБУВ величиной не менее 1 мг/м3 в воздухе рабочей зоны (умеренно и малоопасные вещества).
В остальных случаях ОБУВ не должны применяться при проектировании производства. ОБУВ должны пересматриваться через 2 года после их утверждения или заменяться ПДК с учетом накопленных данных о соотношении здоровья работающих с условиями труда.
Значения ПДК и ОБУВ для отдельных веществ представлены вступившими в действие Гигиеническими нормативами (ГН) 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны», утвержденными Главным государственным санитарным врачом РФ 27 апреля 2003 г., ГН 2.1.6.1339-103 «(ОБУВ) Ориентировочно безопасные уровни воздействия вредных веществ в атмосфере воздуха населенных мест», введенные постановлением № 116 от 30.05.2003 г.
Таблица 4
Отечественные и зарубежные нормативы (рекомендации) содержания вредных веществ в воздухе рабочей зоны
Примечание
Если в графе приведены две величины, то это означает, что в числителе – среднесменная ПДК, а в знаменателе – максимально допустимая концентрация.
В соответствии с устанавливаемыми ПДК или ОБУВ вредных веществ должны разрабатываться методы их контроля в воздухе рабочей зоны.
Контроль содержания вредных веществ в воздухе рабочей зоны
Среднесменные концентрации необходимы для расчета индивидуальной экспозиции, выявления связи изменений состояния здоровья работающих с их профессиональной деятельностью. При этом учитывается верхний предел колебаний концентраций (максимальные концентрации). Для веществ раздражающих и с остронаправленным механизмом действия при оценке связи выявленных нарушений в состоянии здоровья с условиями труда используют максимальные концентрации.
Результаты измерений максимальных концентраций прежде всего необходимы для инспекционного контроля над условиями труда, выявления неблагоприятных гигиенических ситуаций, решения вопросов о необходимости использования средств индивидуальной защиты, оценки технологического процесса, оборудования, санитарно-технических устройств.
Так как контроль над соблюдением максимальных концентраций проводится с целью недопущения значительных подъемов концентраций за короткий промежуток времени, отбор проб осуществляется на тех рабочих местах и с учетом тех технологических операций, при которых возможно выделение в воздушную среду наибольшего количества вредного вещества.
Для веществ, имеющих два норматива – ПДКсс и ПДКм, контролируют и не допускают превышения как средней за смену, так и максимальной концентраций.
Примечание
Аэрозоли преимущественно фиброгенного действия (АПФД) следует контролировать по среднесменным концентрациям, так как их ПДК являются среднесменными.
Для вредных химических веществ, не относящихся к раздражающим и к веществам с остронаправленным механизмом действия и имеющих один норматив (ПДКм), также следует определять фактические среднесменные и максимальные концентрации (сравнивая их с ПДКм).
В случае одной величины норматива – ПДКм или ОБУВ – концентрация вещества за любой 15-минутный промежуток времени смены не должна превышать этой величины. Для веществ, опасных для развития острого отравления, концентрацию, измеренную за более короткий (чем 15 мин) отрезок времени, установленный методом контроля данного вещества, сравнивают с нормативом – ПДКм.
При выделении в воздушную среду нескольких химических веществ или сложной смеси известного и относительно постоянного состава контроль над загрязнением воздуха допускается проводить как по ведущей (определяющей клинические проявления интоксикации), так и наиболее характерной для данной смеси компоненте.
При выборе конкретных методов контроля необходимо руководствоваться Методическими указаниями о способах определения вредных веществ в воздухе рабочей зоны, утвержденными Минздравом России. Аппаратура и приборы, используемые при санитарно-химических исследованиях, подлежат проверке в установленном порядке. Отбор проб воздуха проводят в зоне дыхания работника либо с максимальным приближением к ней воздухозаборного устройства (на высоте 1,5 м от пола).
Длительность отбора одной пробы воздуха определяется методом анализа и зависит от концентрации вещества в воздухе рабочей зоны. При контроле над максимальными концентрациями, если метод анализа позволяет отобрать несколько (2–3 и более) проб в течение 15 мин, вычисляют среднеарифметическую (при равном времени отбора отдельных проб) или средневзвешенную (если время отбора проб разное) величину из полученных результатов, которую сравнивают с ПДКм. В случае если метод контроля вещества предусматривает длительность отбора одной пробы за время, превышающее 15 мин, это следует рассматривать как исключение, и результат каждого измерения сравнивают с установленной для него ПДКм.
В зависимости от класса опасности вредного вещества рекомендуется следующая периодичность контроля: для веществ I класса опасности – не реже 1 раза в 10 дней; II класса – 1 раз в месяц; III класса – 1 раз в 3 месяца; IV класса – 1 раз в 6 месяцев. Контроль над соблюдением среднесменной ПДК проводится применительно к определенной профессиональной группе или конкретному работнику. Для характеристики профессиональной группы среднесменную концентрацию определяют не менее чем у 10 % работников данной профессии.
Измерение среднесменных концентраций приборами индивидуального контроля проводится при непрерывном или последовательном отборе в течение всей смены (но не менее 75 % ее продолжительности) при условии охвата всех производственных операций, включая перерывы (нерегламентированные), пребывание в операторных и др. При этом количество отобранных за смену проб зависит от концентрации вещества в воздухе и определяется методом контроля. Для достоверной характеристики воздушной среды необходимо получить данные не менее чем по трем сменам.
Среднесменную концентрацию можно определить на основе отдельных измерений с учетом всех технологических операций (основных и вспомогательных) и перерывов в работе. Количество проб при этом зависит от числа технологических операций, их длительности, но, как правило, должно быть не менее пяти. В этом случае среднесменная концентрация рассчитывается как концентрация средневзвешенная во время смены или определяется на основе обработки результатов пробоотбора графоаналитическим методом.
Профилактические меры загрязнения воздуха рабочей зоны
При разработке, организации и осуществлении технологических процессов, конструировании производственного оборудования и рабочего инструмента необходимо предусматривать отсутствие или, если это невозможно, установление предельно допустимых концентраций вредных или неприятно пахнущих веществ в воздухе рабочих зон.
Комплекс модернизации и разработки новых технологических процессов и производственного оборудования должен обеспечить:
1) замену технологических процессов и операций, связанных с возможным поступлением опасных и вредных производственных факторов, процессами и операциями, при которых указанные факторы отсутствуют или имеют допустимые параметры;
2) замену токсичных веществ на менее токсичные;
3) ограничение содержания примесей вредных веществ в исходном сырье и конечных продуктах, выпуск продукции в непылящих формах, герметизированных упаковках и др.;
4) применение технологий производства, исключающих непосредственный контакт работающих с вредными производственными факторами;
5) применение в производственном оборудовании конструктивных решений и средств защиты, направленных на уменьшение интенсивности выделения и локализацию вредных производственных факторов;
6) установку систем автоматического контроля, сигнализации и управления технологическим процессом при возможности внезапного загрязнения воздуха рабочей зоны веществами, которые могут вызвать острые отравления.
При санитарно-эпидемиологической экспертизе проектов нормативной и технической документации на новые виды технологических процессов, оборудования и инструмента следует учитывать наличие в них санитарно-эпидемиологических требований и норм, направленных на создание безопасных условий труда с учетом действующих нормативов.
При разработке, внедрении и проведении технологических процессов, проектировании и применении оборудования и инструмента следует предусматривать средства индивидуальной и коллективной защиты, предотвращающие возможное воздействие на работающих опасных и вредных производственных факторов с учетом их комбинированного воздействия.
При разработке, внедрении и проведении технологических процессов, проектировании и применении оборудования и инструмента допускается использовать новые химические вещества и материалы только при наличии или разработке и утверждении в установленном порядке гигиенических нормативов и оформлении санитарно-эпидемиологического заключения.
При производстве и применении микробных препаратов не допускаются к использованию в технологическом процессе патогенные штаммы, а также штаммы-продуценты, обладающие способностью носительства.
В соответствии с Санитарно-эпидемиологическими правилами СП 2.2.2.1327-03 определены:
1) требования к сырью, материалам, их складированию и транспортировке;
2) требования к технологическим процессам, оборудованию, материалам, характеризующимся выделением пыли;
3) требования к технологическим процессам и оборудованию, характеризующимися применением и выделением вредных веществ (газов, паров, жидкостей).
Санитарно-гигиенические требования к сырью, материалам, их складированию и транспортировке
Организации должны иметь утвержденную в установленном порядке документацию, санитарно-эпидемиологические заключения на все виды исходного сырья и материалов, используемых в технологическом процессе.
Доставку сырья в организации любым видом транспорта следует осуществлять наиболее безопасными и удобными для погрузки и разгрузки способами, максимально устраняющими ручные операции, исключающими опасность травматизма, физическое перенапряжение, возможность интоксикации, загрязнения тела, одежды работающих и окружающей территории.
Для материалов, доставляемых обычно навалом (щебня, гравия, песка, глины и др.), необходимо использовать механизированные способы погрузки и разгрузки. Порошковые и сыпучие материалы (цемент, гипс, фосфоритная мука и др.) транспортируются в специальных железнодорожных вагонах и автомашинах типа цементовозов, обеспечивающих беспыльную загрузку, транспортировку и разгрузку материалов.
Тара для транспортировки порошковых и сыпучих материалов должна изготавливаться из прочных материалов, обеспечивающих ее целостность при погрузочно-разгрузочных операциях. На таре для перевозки сырья, материалов (мешках, бочках, контейнерах и т. д.) должна иметься четкая соответствующая маркировка.
Для транспортировки токсичных и агрессивных жидких веществ должны использоваться специальные цистерны. Подача веществ в производственные помещения должна осуществляться по трубопроводам, изготовленным из материалов, стойких к действию химических соединений и обеспеченным надежными фланцами и арматурой, исключающими просачивание указанных веществ через неплотности.
Доставку агрессивных жидкостей следует осуществлять в специальной стеклянной или пластиковой таре, снабженной оплеткой. Транспортирование в цеха этих жидкостей должно производиться на специальных тележках.
Для транспортировки сжиженных газов в больших количествах (более 5 т) следует использовать специальный транспорт. В цеха при большом количестве потребления газы должны подаваться из складских емкостей по трубопроводам, а при малом расходе допускается их подача в баллонах.
Транспортировка пылящих материалов должна осуществляться по вакуум-пневматическим системам или с помощью транспортеров, полностью укрытых и снабженных местной вытяжной вентиляцией.
Приемные резервуары для жидких технических веществ и сжиженных газов должны превышать объем транспортных цистерн, с тем чтобы все содержимое заполняло резервуар без добавочных операций, связанных с переключением сливных труб.
Емкости для приема жидких токсичных веществ оборудуются уровнемерами и другими устройствами, обеспеченными автоматическими закрывающимися клапанами и сигнализацией для предупреждения их переполнения.
Организации должны иметь достаточной мощности склады, оборудованные подъемно-транспортными средствами, позволяющими полностью механизировать и обезопасить операции разгрузки и погрузки сырья и материалов. Складские помещения должны быть чистыми, сухими, с исправными крышами и полами, иметь освещенные проходы и проезды между стеллажами, секциями, входными и выходными проемами, регулярно убираться и ремонтироваться.
Помещения для хранения химических веществ оборудуются стеллажами, поддонами, снабжаются инвентарем, СИЗ, приспособлениями, необходимыми для безопасного обращения с химическими веществами. Полы и стены в них должны допускать влажную уборку и быть кислото– и щелочестойкими.
Хранение сыпучих материалов осуществляется в закрытых, защищенных от ветра складах. Допускается устройство открытых складов для материалов, поступающих навалом, при этом площадка для их хранения должна иметь твердое покрытие.
Подачу порошковых материалов в склады и разгрузку их необходимо осуществлять системами пневматических желобов, шнеков и пневмотранспорта, обеспеченных установками обеспыливания. Аспирационный воздух от этих систем перед выбросом наружу следует очищать от пыли.
Склады для малотоннажных изделий обеспечиваются транспортными средствами и подъемными механизмами в зависимости от габаритов, веса и назначения складируемых изделий.
Склады токсичных веществ с механизированной подачей должны быть связаны прямым телефоном или другой системой сигнализации с цехами.
Склады хранения токсичных отходов I класса опасности в обязательном порядке оборудуются автоматическими газоанализаторами контроля воздушной среды, сблокированными с системами вентиляции и звуковой сигнализации.
Требования к технологическим процессам, оборудованию, материалам, характеризующимся выделением пыли
Эти процессы должны:
1) быть механизированы и автоматизированы;
2) обеспечивать беспыльную транспортировку материалов;
3) предусматривать способы подавления пыли в процессе ее образования с применением воды (увлажнения, мокрого помоля, гидрозолоулавливания, мокрого обогащения) или других средств (аспирации, пенообразования, электрозаряда);
4) обеспечивать применение сырья и материалов в непылящих формах (гранулах, брикетах и т. п.). Управление процессом следует организовать с помощью дистанционных систем.
Применение поверхностно-активных веществ и других химических реактивов, обеспечивающих повышение смачиваемости пыли или незамерзание водных растворов, должны иметь санитарно-эпидемиологические заключения.
Производственное оборудование, при работе которого образуется пыль (дробильное, дозировочное, размольно-смесительное и др.), должно быть герметизировано и снабжено аспирационными устройствами, исключающими поступление запыленного воздуха в производственное помещение.
Рассев порошковых материалов на открытых ситах не допускается. Плоские сита, ситобураты, виброгрохоты, бункера для сбора мелочи оборудуются укрытиями и аспирационными устройствами. Разделение порошковых материалов по фракциям следует производить с помощью воздушных сепараторов или электромагнитных устройств, обеспеченных надежным укрытием и находящихся под разрежением.
Дозировка компонентов исходных порошкообразных материалов осуществляется с помощью закрытых автоматических дозаторов при массовом производстве или в специальных герметичных боксах при работе вручную на опытных производствах.
При ручном прессовании изделий дозировку и засыпку шихты в пресс-формы необходимо осуществлять с помощью автоматических дозаторов с укрытиями, оборудованными вытяжной вентиляцией от загрузочных отверстий бункеров, от приемников изделий, а также по периметру стационарной пресс-формы и от плунжера, подающего шихту в пресс-форму.
Для беспыльной выгрузки сыпучих материалов из мешков, бочек и другой мелкой тары рекомендуется применять раздаточные машины с аспирацией или вакуум-пневматические устройства. Мягкая тара после разгрузки должна поступать по закрытым коммуникациям в накопители, оборудованные системой местной вытяжной вентиляции.
Сушку порошковых и пастообразных материалов следует осуществлять в закрытых аппаратах непрерывного действия, оборудованных системами вытяжной вентиляции.
Фасовку и упаковку порошкообразных веществ необходимо осуществлять на специальном оборудовании, изолированном в боксах или установленном в отдельном помещении. Оборудование снабжается аспирационными укрытиями.
Не допускается производство пескоструйных работ с применением сухого песка. Очистка изделий дробью, металлическим песком и песком с водой должна производиться в герметичном оборудовании с дистанционным управлением. При этом при гидропескоструйной очистке надлежит предусматривать блокировку открывания ворот пескоструйных камер с работой насосов высокого давления.
Станки и инструмент для механической обработки материалов и изделий следует оборудовать местной вытяжной вентиляцией с пневматическими пыле– и стружкоприемниками. Конструкция станков должна обеспечивать удобную и безопасную уборку стружки.
При осуществлении всех видов работ, связанных с выделением асбестсодержащей пыли, решение вопросов по снижению загрязнения воздуха рабочих зон, контролю над содержанием пыли должно осуществляться в соответствии с требованиями действующих санитарно-эпидемиологических правил при работах с асбестом и асбестсодержащими материалами.
Аспирационные системы, а также системы орошения и гидропылеподавления надлежит блокировать с пусковыми устройствами технологического оборудования, исключающими его работу при отключенной вентиляции.
Воздуховоды вентиляционных систем, стены и элементы строительных конструкций цехов, проемы и поверхности окон, арматура освещения должны очищаться от пыли и копоти не реже 1 раза в 3 месяца.
При осуществлении технологических процессов, характеризующихся образованием и выделением пыли, для защиты органов дыхания от пыли все лица, занятые на работах, где концентрации пыли в воздухе рабочей зоны превышают ПДК, должны быть обеспечены респираторами, соответствующими требованиям действующих нормативных и методических документов. Режимы применения респираторов устанавливаются с учетом концентраций пыли в воздухе рабочей зоны, времени пребывания в них работающих.
Требования к технологическим процессам и оборудованию, характеризующимся применением и выделением вредных веществ
Организация технологических процессов и производственное оборудование должны исключать (для веществ I и II классов опасности) или резко ограничивать (для остальных веществ) возможность контакта работающих с вредными веществами путем проведения процесса в непрерывном замкнутом цикле, использования герметичной аппаратуры при широком применении комплексной автоматизации. При этом предпочтение должно быть отдано:
1) технологическим процессам, при которых отсутствуют высокотоксичные исходные и промежуточные продукты синтеза и снижено до минимума количество операций, связанных с выделением токсичных веществ (как-то кристаллизация, фильтрация, сушка и др.);
2) непрерывным технологическим циклам, проводящимся под вакуумом, разрежением, при низкой температуре.
Использование веществ I и II классов опасности допускается при непрерывном технологическом процессе в замкнутом цикле, закрытых технологических процессах. В отдельных случаях допускаются периодические технологические процессы, при этом необходимо предусмотреть изоляцию особо вредных участков работы, рациональную вентиляцию и обязательное использование соответствующих СИЗ.
Производственные процессы, при которых применяются или образуются вредные вещества I и II классов опасности, должны быть максимально механизированы. Следует предусмотреть автоматизированное или дистанционное управление процессом.
Пульты управления процессом следует размещать в изолированных помещениях при создании в них избыточного давления.
Фиксированные рабочие места с возможным выделением вредных веществ, устранение которых невозможно при современном уровне технологии, надлежит оборудовать укрытиями с аспирацией. При возможной конденсации паров в нижней части укрытия устанавливают сборник с отводом жидкости в закрытые емкости, возвратом их в технологический процесс или отводом на станции нейтрализации.
Загрузка и выгрузка жидкого сырья и полупродуктов должна осуществляться по закрытым коммуникациям с использованием самотека, вакуума, насосов. Подача водных растворов химических веществ открытым способом не допускается. При необходимости периодической подачи в аппараты сыпучих веществ или малых количеств жидкостей должны быть предусмотрены меры, обеспечивающие предупреждение выделения вредных веществ из аппаратов (например, герметичные двойные затворы).
Фланцевые соединения на аппаратах, трубопроводах и коммуникациях должны быть герметичными. Фланцы на трубопроводах для агрессивных веществ, в том числе крепких кислот и щелочей, укрываются защитными кожухами. Не допускается установка фланцев на трубопроводах, прокладываемых над местами движения людских потоков и транспорта. Использование фланцев допустимо только в местах подключения трубопровода к технологической аппаратуре.
Очистка, мойка, пропарка и обезвреживание емкостей должны производиться на специально оборудованных пропарочно-промывочных станциях или пунктах. К стационарным аппаратам, периодически подвергающимся обезвреживанию, чистке и мойке, должны быть подведены пар, вода и другие средства, предусмотрены устройства закрытых стоков и аспирационные укрытия. При этом следует обеспечивать сбор сточных вод с последующей их очисткой.
Процесс наполнения емкостей, сборников, мерных сосудов технологическими жидкостями обязательно снабжается системой сигнализации о максимальном допустимом уровне их заполнения.
Контроль содержания в воздухе рабочих зон химических веществ остронаправленного действия должен быть автоматическим, соответствовать требованиям действующих нормативных документов по контролю содержания вредных веществ в воздухе рабочей зоны.
В рабочих помещениях следует предусматривать гидранты, фонтанчики с автоматическим включением или души для немедленного смывания агрессивных химических веществ при попадании на кожные покровы и слизистые оболочки глаз.
При необходимости немедленного слива технологической жидкости в условиях аварийной ситуации или во время очистки и ремонта следует предусматривать запасные емкости.
Интерьер производственных помещений, в том числе трубопроводы для пара, воды, сжатого воздуха и других газов, вакуумных линий, кислот, химических растворов, следует окрашивать в цвета в соответствии с требованиями нормативной документации по проектированию цветовой отделки интерьеров производственных зданий промышленных организаций.
Внутренние поверхности технологической аппаратуры, а также укрытия, воздуховоды, вытяжные вентиляторы должны быть выполнены из коррозионно-устойчивых материалов.
При технологических процессах, особенностью которых является микробное загрязнение воздушной среды, очистка удаляемого из рабочих зон воздуха должна, кроме указанных выше способов, дополнительно предусматривать специальные методы очистки, обеспечивающие нормативные уровни содержания микроорганизмов-продуцентов, бактериальных препаратов и их компонентов в атмосферном воздухе.
Микроклимат рабочих помещений
Производственные помещения – замкнутые пространства в специально предназначенных зданиях и сооружениях, в которых постоянно (по сменам) или периодически (в течение рабочего дня) осуществляется трудовая деятельность людей. В процессе трудовой деятельности организм человека подвергается различной тепловой нагрузке.
Гигиенические требования устанавливаются к показателям микроклимата рабочих мест производственных помещений с учетом интенсивности энерготрат работающих, времени выполнения работы, периодов года, к методам измерения и контроля микроклиматических условий.
Показателями, характеризующими микроклимат в производственных помещениях, являются:
1) температура воздуха;
2) температура поверхностей;
3) относительная влажность воздуха;
4) скорость движения воздуха;
5) интенсивность теплового облучения.
Оптимальные микроклиматические условия установлены по критериям оптимального теплового и функционального состояния человека. Они обеспечивают общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах (см табл. 5).
Допустимые микроклиматические условия установлены по критериям допустимого теплового и функционального состояния человека на период 8-часовой рабочей смены (см. табл. 6). Они не вызывают повреждений или нарушений состояния здоровья, но могут приводить к возникновению общих и локальных ощущений теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности.
Таблица 5
Оптимальные величины показателей микроклимата на рабочих местах производственных помещений (Санитарные правила и нормы (СанПиН) 2.2.4.548-96)
Допустимые величины показателей микроклимата устанавливаются в случаях, когда по технологическим требованиям, техническим и экономически обоснованным причинам не могут быть обеспечены оптимальные величины.
При обеспечении допустимых величин микроклимата на рабочих местах:
1) перепад температуры воздуха по высоте должен быть не более 3 °C;
2) перепад температуры воздуха по горизонтали, а также ее изменения в течение смены не должны превышать:
а) при категориях работ Iа и Iб – 4 °C;
б) при категориях работ IIа и IIб – 5 °C;
в) при категории работ III – 6 °C.
При этом абсолютные значения температуры воздуха не должны выходить за пределы величин, указанных в таблице 8 для отдельных категорий работ.
К категории Iа относятся работы с интенсивностью энерготрат до 120 ккал/ч (до 139 Вт), производимые сидя и сопровождающиеся незначительным физическим напряжением (ряд профессий на предприятиях точного приборо– и машиностроения, на часовом, швейном производствах, в сфере управления и т. п.).
К категории 16 относятся работы с интенсивностью энерготрат 121–150 ккал/ч (140–174 Вт), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и т. п.).
К категории II относятся работы с интенсивностью энерготрат 151–200 ккал/ч (175–232 Вт), связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения (ряд профессий в механосборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и т. п.).
К категории IIб относятся работы с интенсивностью энерготрат 201–250 ккал/ч (233–290 Вт), связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением (ряд профессий в механизированных литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и т. п.).
К категории III относятся работы с интенсивностью энерготрат более 250 ккал/ч (более 290 Вт), связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий (ряд профессий в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой опок машиностроительных и металлургических предприятий и т. п.).
При температуре воздуха на рабочих местах 25 °C и выше максимально допустимые величины относительной влажности воздуха не должны выходить за пределы:
1) 70 % – при температуре воздуха 25 °C;
2) 65 % – при температуре воздуха 26 °C;
3) 60 % – при температуре воздуха 27 °C;
4) 55 % – при температуре воздуха 28 °C.
Таблица 6
Допустимые величины показателей микроклимата на рабочих местах производственных помещений
При температуре воздуха 26–28 °C скорость движения воздуха, указанная в таблице 8 для теплого периода года, должна соответствовать диапазону:
1) 0,1–0,2 м/с – при категории работ Iа;
2) 0,1–0,3 м/с – при категории работ Iб;
3) 0,2–0,4 м/с – при категории работ IIа;
4) 0,2–0,5 м/с – при категориях работ IIб и III.
Допустимые величины интенсивности теплового облучения работающих на рабочих местах от производственных источников, нагретых до темного свечения (материалов, изделий и др.), должны соответствовать значениям, приведенным в таблице 7.
Таблица 7
Допустимые величины интенсивности теплового облучения поверхности тела работающих от производственных источников
Допустимые величины интенсивности теплового облучения работающих от источников излучения, нагретых до белого и красного свечения (раскаленный или расплавленный металл, стекло, пламя и др.), не должны превышать 140 Вт/м2.
При этом облучению не должно подвергаться более 25 % поверхности тела, обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.
При наличии теплового облучения работающих температура воздуха на рабочих местах не должна превышать в зависимости от категории работ следующих величин: 1) 25 °C – при категории работ Iа;
1) 25 °C – при категории работ Iа;
2) 24 °C – при категории работ Iб;
3) 22 °C – при категории работ IIа;
4) 21 °C – при категории работ IIб;
5) 20 °C – при категории работ III.
Профилактические мероприятия
В целях профилактики неблагоприятного воздействия микроклимата должны быть использованы защитные мероприятия (например, системы местного кондиционирования воздуха, воздушное душирование, компенсация неблагоприятного воздействия одного параметра микроклимата изменением другого, спецодежда и другие средства индивидуальной защиты, помещения для отдыха и обогревания, регламентация времени работы (в частности, перерывы в работе), сокращение рабочего дня, увеличение продолжительности отпуска, уменьшение стажа работы и др.).
Для оценки сочетанного воздействия параметров микроклимата в целях осуществления мероприятий по защите работающих от возможного перегревания рекомендуется использовать интегральный показатель тепловой нагрузки среды (ТНС), величины которого приведены в таблице 8.
Тепловая нагрузка среды (ТНС) – сочетанное действие на организм человека параметров микроклимата (температуры, влажности, скорости движения воздуха, теплового облучения), выраженное одночисловым показателем в °С.
Таблица 8
Рекомендуемые величины интегрального показателя тепловой нагрузки среды (ТНС-индекса) для профилактики перегревания организма
Индекс тепловой нагрузки среды (ТНС-индекс) является эмпирическим показателем, характеризующим сочетанное действие на организм человека параметров микроклимата (температуры, влажности, скорости движения воздуха и теплового облучения).
ТНС-индекс определяется на основе величин температуры смоченного термометра аспирационного психрометра (t) и температуры внутри зачерненного шара (t).
Температура внутри зачерненного шара измеряется термометром, резервуар которого помещен в центр зачерненного полого шара; t отражает влияние температуры воздуха, температуры поверхностей и скорости движения воздуха. Зачерненный шар должен иметь диаметр 90 мм, минимально возможную толщину и коэффициент поглощения 0,95. Точность измерения температуры внутри шара ±0,5 °C.
ТНС-индекс рассчитывается по уравнению:
ТНС = 0,7 x tвл + 0,3 x tш.
ТНС-индекс рекомендуется использовать для интегральной оценки тепловой нагрузки среды на рабочих местах, на которых скорость движения воздуха не превышает 0,6 м/с, а интенсивность теплового облучения – 1200 Вт/м.
Метод измерения и контроля ТНС-индекса аналогичен методу измерения и контроля температуры воздуха. Значения ТНС-индекса не должны выходить за пределы величин, рекомендуемых в таблице 8.
В целях защиты работающих от возможного перегревания или охлаждения при температуре воздуха на рабочих местах выше или ниже допустимых величин время пребывания на рабочих местах (непрерывно или суммарно за рабочую смену) ограничивается величинами, указанными в таблицах 9 и 10. При этом средне-сменная температура воздуха, при которой работающие находятся в течение рабочей смены на рабочих местах и местах отдыха, не должна выходить за пределы допустимых величин температуры воздуха для соответствующих категорий работ, указанных в таблице 9.
Таблица 9
Время пребывания на рабочих местах при температуре воздуха выше допустимых величин
Таблица 10
Время пребывания на рабочих местах при температуре воздуха ниже допустимых величин
Среднесменная температура воздуха (t) рассчитывается по формуле:
tв = (tв1 x 1 + tв2 x 2+… + tвn x n)/8,
где t, tв1… tвn – температура воздуха (°С) на соответствующих участках рабочего места;
1, 2, …, n – время (ч) выполнения работы на соответствующих участках рабочего места; 8 – продолжительность рабочей смены (ч).
Требования к организации контроля и методам измерения микроклимата
Измерения показателей микроклимата в целях контроля их соответствия гигиеническим требованиям должны проводиться в холодный период года в дни с температурой наружного воздуха, отличающейся от средней температуры наиболее холодного месяца зимы не более чем на 5 °C, в теплый период года – в дни с температурой наружного воздуха, отличающейся от средней максимальной температуры наиболее жаркого месяца не более чем на 5 °C. Частота измерений в оба периода года определяется стабильностью производственного процесса, функционированием технологического и санитарно-технического оборудования.
При выборе участков и времени измерения необходимо учитывать все факторы, влияющие на микроклимат рабочих мест (фазы технологического процесса, функционирование систем вентиляции и отопления и др.). Измерения показателей микроклимата следует проводить не менее 3 раз в смену (в начале, середине и конце). При колебаниях показателей микроклимата, связанных с технологическими и другими причинами, необходимо проводить дополнительные измерения при наибольших и наименьших величинах термических нагрузок на работающих.
Измерения следует проводить на рабочих местах. Если рабочим местом являются несколько участков производственного помещения, то измерения осуществляются на каждом из них.
При наличии источников локального тепловыделения, охлаждения или влаговыделения (нагретых агрегатов, окон, дверных проемов, ворот, открытых ванн и т. д.) измерения следует проводить на каждом рабочем месте в точках, минимально и максимально удаленных от источников термического воздействия.
В помещениях с большой плотностью рабочих мест при отсутствии источников локального тепловыделения, охлаждения или влаговыделения участки измерения температуры, относительной влажности и скорости движения воздуха должны распределяться равномерно по площади помещения в соответствии с таблицей 11.
При работах, выполняемых сидя, температуру и скорость движения воздуха следует измерять на высоте 0,1 и 1,0 м, относительную влажность воздуха – на высоте 1,0 м от пола или рабочей площадки. При работах, выполняемых стоя, температуру и скорость движения воздуха следует измерять на высоте 0,1 и 1,5 м, а относительную влажность воздуха – на высоте 1,5 м.
Таблица 11
Минимальное количество участков измерения температуры, относительной влажности и скорости движения воздуха
При наличии источников лучистого тепла тепловое облучение на рабочем месте необходимо измерять от каждого источника, располагая приемник прибора перпендикулярно падающему потоку. Измерения следует проводить на высоте 0,5; 1,0 и 1,5 м от пола или рабочей площадки.
Температуру поверхностей следует измерять в случаях, когда рабочие места удалены от них на расстояние не более 2 м.
Температуру и относительную влажность воздуха при наличии источников теплового излучения и воздушных потоков на рабочем месте следует измерять аспирационными психрометрами. При отсутствии в местах измерения лучистого тепла и воздушных потоков температуру и относительную влажность воздуха можно измерять психрометрами, не защищенными от воздействия теплового излучения и скорости движения воздуха. Могут использоваться также приборы, позволяющие раздельно измерять температуру и влажность воздуха.
Скорость движения воздуха следует измерять анемометрами вращательного действия (крыльчатыми, чашечными и др.). Малые величины скорости движения воздуха (менее 0,5 м/с), особенно при наличии разнонаправленных потоков, можно измерять термоэлектроанемометрами, а также цилиндрическими и шаровыми кататермометрами при защищенности их от теплового излучения.
Температуру поверхностей следует измерять контактными приборами (типа электротермометров) или дистанционными (пирометрами и др.).
Интенсивность теплового облучения следует измерять приборами, обеспечивающими угол видимости датчика, близкий к полусфере (не менее 160°), и чувствительными в инфракрасной и видимой области спектра (актинометрами, радиометрами и т. д.).
Диапазон измерения и допустимая погрешность измерительных приборов должны соответствовать требованиям таблицы 12.
Таблица 12
Требования к измерительным приборам
По результатам исследования составляется протокол, в котором отражаются общие сведения о производственном объекте, размещении технологического и санитарно-технического оборудования, источниках тепловыделения, охлаждения и влаговыделения, приведены схема размещения участков, на которых измеряются параметры микроклимата, и другие данные.
В заключение протокола дается оценка результатов выполненных измерений на соответствие нормативным требованиям.
Освещенность
Одним из основных вопросов охраны труда является организация рационального освещения производственных помещений и рабочих мест.
Производственное освещение обеспечивает зрительное восприятие объектов окружающего человека пространства. Оно имеет исключительно большое значение, поскольку около 90 % информации поступает к человеку через зрительный канал.
Качество производственного освещения в значительной мере сказывается на безопасности и производительности труда человека. При плохом освещении человек быстро устает, работает менее продуктивно, возникает потенциальная опасность ошибочных действий и несчастных случаев. По имеющимся данным около 5 % травм можно объяснить недостаточным или нерациональным освещением, а в 20 % оно способствовало возникновению травм. Кроме того, плохое освещение может привести к профессиональным заболеваниям, например таким, как близорукость.
Правильно спроектированное и выполненное производственное освещение улучшает условия зрительной работы, снижает утомляемость, способствует повышению производительности труда, благотворно влияет на производственную среду, оказывая положительное психологическое воздействие на работающего, повышает безопасность труда и снижает травматизм.
В условиях современного производства важным фактором улучшения условий труда в целом является оптимизация количественных и качественных характеристик освещения рабочих мест.
Решение вопроса рационального освещения производственных помещений и рабочих мест улучшает условия зрительной работы, ослабляет зрительное и нервное утомление, способствует повышению внимания и улучшению координационной деятельности. Хорошее освещение усиливает деятельность дыхательных органов, способствуя увеличению поглощения кислорода.
Напряженная зрительная работа вследствие нерационального освещения может явиться причиной функциональных нарушений в зрительном анализаторе и привести к расстройству зрения, а в тяжелых случаях и к полной его потере.
Усталость органов зрения зависит от степени напряженности процессов, сопровождающих зрительное восприятие.
Основная задача освещения в производственных помещениях состоит в обеспечении оптимальных условий для видения. Эта задача решается выбором наиболее рациональной системы освещения и источников света.
Для освещения производственных помещений используется освещение трех видов: естественное, обусловленное энергией Солнца и рассеянного света небосвода, искусственное, осуществляемое электрическими лампами, и смешанное, т. е. сочетание естественного и искусственного освещения.
Искусственное освещение по функциональному назначению подразделяется на следующие виды: рабочее, аварийное, эвакуационное и охранное.
Рабочее освещение обеспечивает необходимые условия освещенности при нормальном режиме работы осветительных установок.
Аварийное освещение обеспечивает минимально необходимые осветительные условия для продолжения работы при временном выходе из строя рабочего освещения.
Эвакуационное освещение служит для эвакуации людей из помещений при авариях рабочего освещения в местах, опасных для прохода людей, на лестницах и основных проходах производственных помещений.
Охранное освещение (при отсутствии специальных технических средств охраны) должно предусматриваться вдоль границ территорий, охраняемых в ночное время.
Искусственное рабочее освещение промышленных предприятий осуществляется с помощью двух систем – общего освещения и комбинированного освещения, т. е. совокупности местного и общего освещения.
Гигиенические требования к естественному освещению помещений жилых и общественных зданий
Помещения с постоянным пребыванием людей должны иметь естественное освещение.
Естественное освещение подразделяется на следующие типы – боковое, верхнее и комбинированное (верхнее и боковое).
При верхнем или комбинированном естественном освещении помещений любого назначения нормируется среднее значение коэффициента естественной освещенности (КЕО) в точках, расположенных на пересечении вертикальной плоскости характерного разреза помещения и рабочей поверхности. Расчетная точка принимается в геометрическом центре помещения или на расстоянии 1 м от поверхности стены, противостоящей боковому светопроему.
При комбинированном естественном освещении допускается деление помещения на зоны с боковым освещением (зоны, примыкающие к наружным стенам с окнами) и зоны с верхним освещением. Нормирование и расчет естественного освещения в каждой зоне производятся независимо друг от друга.
При двухстороннем боковом освещении помещений любого назначения нормированное значение КЕО должно быть обеспечено в геометрическом центре помещения (на пересечении вертикальной плоскости характерного разреза помещения и рабочей поверхности).
Расчет естественного освещения помещений производится без учета мебели, оборудования, озеленения и деревьев, а также при 100 %-ном использовании светопрозрачных заполнений в светопроемах. Допускается снижение расчетного значения КЕО от нормируемого КЕО не более чем на 10 %.
Расчетное значение средневзвешенного коэффициента отражения внутренних поверхностей помещения следует принимать равным 0,5.
Неравномерность естественного освещения помещений с верхним или комбинированным естественным освещением не должна превышать 3:1. Расчетное значение КЕО при верхнем и комбинированном естественном освещении в любой точке на линии пересечения условной рабочей поверхности и плоскости характерного вертикального разреза помещения должно быть не менее нормированного значения КЕО при боковом освещении в соответствии с существующими нормами.
При одностороннем боковом освещении в жилых зданиях нормируемое значение КЕО должно быть обеспечено в расчетной точке, расположенной на пересечении вертикальной плоскости характерного разреза помещения и плоскости пола на расстоянии 1 м от стены, наиболее удаленной от световых проемов: в одной комнате – для 1-, 2– и 3-комнатных квартир и в двух комнатах – для 4-х комнатных квартир, и более.
В остальных комнатах многокомнатных квартир и в кухне нормируемое значение КЕО при боковом освещении должно обеспечиваться в расчетной точке, расположенной в центре помещения на плоскости пола.
При одностороннем боковом освещении жилых комнат общежитий, гостиных и номеров гостиниц нормируемое значение КЕО должно быть обеспечено в расчетной точке, расположенной на пересечении вертикальной плоскости характерного разреза помещения и плоскости пола в геометрическом центре помещения.
При одностороннем боковом освещении в помещениях детских дошкольных учреждений нормируемое значение КЕО должно быть обеспечено:
1) в групповых и игровых помещениях – в расчетной точке, расположенной на пересечении вертикальной плоскости характерного разреза помещения и плоскости пола на расстоянии 1 м от стены, наиболее удаленной от световых проемов;
2) в остальных помещениях – в расчетной точке, расположенной в геометрическом центре помещения на рабочей поверхности.
При одностороннем боковом освещении помещений школ, школ-интернатов, профессионально-технических и средних специальных учебных заведений нормируемое значение КЕО должно быть обеспечено:
1) в учебных и учебно-производственных помещениях – в расчетной точке, расположенной на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности на расстоянии 1,2 м от стены, наиболее удаленной от световых проемов;
2) в остальных помещениях – в расчетной точке, расположенной в геометрическом центре помещения на рабочей поверхности.
При одностороннем боковом освещении помещений учреждений здравоохранения нормируемое значение КЕО должно быть обеспечено:
1) в палатах больниц, в палатах и спальных комнатах объектов социального обеспечения (интернатов, пансионатов для престарелых инвалидов и т. п.), санаториев и домов отдыха – в расчетной точке, расположенной на пересечении вертикальной плоскости характерного разреза помещения и плоскости пола на расстоянии 1 м от стены, наиболее удаленной от световых проемов;
2) в кабинетах врачей, ведущих прием больных, в смотровых, в приемно-смотровых боксах, перевязочных – в расчетной точке, расположенной на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности на расстоянии 1 м от стены, наиболее удаленной от световых проемов;
3) в остальных помещениях – в расчетной точке, расположенной в центре помещения на рабочей поверхности.
Искусственное освещение помещений подразделяется на общее и комбинированное.
Рабочее искусственное освещение следует предусматривать для всех помещений зданий, а также участков открытых пространств, предназначенных для работы, прохода людей и движения транспорта.
Нормируемые значения освещенности устанавливаются в точках ее минимального значения на рабочей поверхности внутри помещений для разрядных источников света.
Для общего освещения помещений следует использовать разрядные лампы и (или) лампы накаливания.
Для местного освещения, кроме разрядных источников света, допускается использование ламп накаливания, преимущественно галогенных.
Прочерки в таблице означают отсутствие предъявляемых требований.
В помещениях общественных зданий следует применять систему общего освещения. Рекомендуется применение системы комбинированного освещения в помещениях общественных зданий, где выполняется напряженная зрительная работа.
Общее освещение в помещениях общественных зданий должно быть равномерным.
Общее локализованное освещение допускается предусматривать:
1) в помещениях со стационарным крупным оборудованием (торговых залах магазинов, архиво– и книгохранилищах);
2) в выставочных помещениях с постоянно фиксированными плоскостями экспозиции;
3) в помещениях, в которых рабочие места расположены группами, сосредоточенными на отдельных участках (пошивочных и ремонтных мастерских, гладильных, лабораториях);
4) в помещениях, на разных участках которых выполняются работы различной точности, требующие разных уровней освещенности.
Уровни суммарной засветки окон жилых зданий, палат лечебных учреждений, палат и спальных комнат объектов социального обеспечения световыми приборами наружного освещения не должны превышать следующих значений средней вертикальной освещенности:
1) 7 лк – при норме средней яркости проезжей части 0,4 кд/м2;
2) 10 лк – при норме средней яркости проезжей части 0,6–1,0 кд/м2;
3) 20 лк – при норме средней яркости проезжей части 1,2–1,6 кд/м2.
Таблица 13
Нормируемые показатели естественного, искусственного и совмещенного освещения помещений жилых зданий (СанПиН 2.2.1/2.1.1.1278-03)
Примечание.
В жилых домах и квартирах приведенные значения освещенности, показателя дискомфорта и коэффициента пульсации являются рекомендуемыми.
Уровни суммарной засветки окон жилых зданий, палат лечебных учреждений, палат и спальных комнат объектов социального обеспечения от архитектурного, рекламного освещения, а также установок освещения строительных площадок не должны превышать более чем на 10 % величин, приведенных выше.
Размещение пульсирующих рекламных установок допускается при отсутствии прямой видимости их воздействия в точке, расположенной на расстоянии 1 м от геометрического центра светопроема.
Совмещенное освещение помещений жилых и общественных зданий допускается предусматривать в случаях, когда это требуется по условиям выбора рациональных объемно-планировочных или градостроительных решений, за исключением жилых комнат домов и общежитий, гостиных и номеров гостиниц, спальных помещений санаториев и домов отдыха, групповых и игральных детских дошкольных учреждений, палат лечебно-профилактических учреждений, палат и спальных комнат объектов социального обеспечения (интернатов, пансионатов для престарелых и инвалидов и т. п.).
При совмещенном освещении общественных зданий нормируемые значения КЕО должны составлять от нормированных значений КЕО при естественном освещении:
1) не менее 87 % для учебных и учебно-производственных помещений школ, школ-интернатов, учебных заведений начального и среднего профессионального образования;
2) не менее 60 % для остальных помещений.
При совмещенном освещении нормируемую освещенность в учебных и учебно-производственных помещениях школ, школ-интернатов, профессионально-технических и средних специальных учебных заведений следует повышать на одну ступень по шкале освещенности в соответствии с установленными нормами.
При совмещенном освещении учебных и учебно-производственных помещений школ, школ-интернатов, учебных заведений начального и среднего профессионального образования следует предусматривать раздельное включение рядов светильников, расположенных параллельно светопроемам.
Гигиенические требования к производственному освещению, основанные на психофизических особенностях восприятия света и его влияния на организм человека, могут быть сведены к следующим.
1. Спектральный состав света, создаваемый искусственными источниками, должен приближаться к естественному.
2. Уровень освещенности должен быть достаточным и соответствовать гигиеническим нормам, учитывающим условия зрительной работы.
3. Равномерность и естественность уровня освещенности должны обеспечиваться в помещении во избежание частой переадаптации и утомления зрения.
4. Освещение не должно создавать блесткости как самих источников света, так и других предметов в пределах рабочей зоны.
Таблица 14
Нормируемые показатели естественного, искусственного и совмещенного освещения основных помещений общественного здания, а также сопутствующих им производственных помещений (СанПиН 2.2.1/2.1.1.1278-03)
Примечание.
<*> В жилых домах и квартирах приведенные значения освещенности, показателя дискомфорта и коэффициента пульсации являются рекомендуемыми.
<**> Норма дана для ламп накаливания.
Проектирование системы общего искусственного освещения представляет собой последовательное решение таких задач, как:
1) выбор типа источников света (ламп);
2) выбор типа светильников;
3) размещение светильников в плане помещения и определение их количества;
4) расчет светового потока ламп светильников;
5) выбор стандартной лампы.
Исходными данными для расчета являются:
1) гигиенические нормы освещенности Еmin(лк);
2) габаритные размеры производственного помещения A x B x H (м);
3) коэффициенты отражения рабочих поверхностей, поверхностей стен и потолка.
Нормативные документы рекомендуют во всех случаях в качестве источников света использовать люминесцентные лампы.
Их достоинство:
1) высокая световая отдача (до 75 лм/вт и более);
2) продолжительный срок службы (до 10 000 ч);
3) малая яркость светящейся поверхности;
4) спектральный состав излучаемого света.
Одним из недостатков таких ламп является высокая пульсация светового потока, вызывающая утомление зрения. Поэтому коэффициент пульсации освещенности регламентирован в пределах 10–20 % в зависимости от разряда зрительной работы.
Светильники выбирают с учетом характеристик рабочей среды в помещении.
Освещенность на рабочем месте должна соответствовать характеру зрительной работы, который определяется следующими тремя параметрами:
1) объектом различимости (наименьший размер рассматриваемого предмета);
2) фоном (поверхность, прилегающая непосредственно к объекту различения);
3) контрастом объекта с фоном, характеризующимся соотношением яркостей рассматриваемого объекта.
При оборудовании помещения необходимо учитывать воздействие на психику человека цвета. Цветовая гамма рабочего помещения должна быть выдержана в спокойных, мягких тонах.
Для получения равномерного освещения светильники располагают симметричными рядами, при этом расстояние между светильниками в ряду, между рядами светильников и от края светильников до стен не должно превышать:
L = λ x h,
где L – расстояние между светильниками в ряду и между рядами светильников;
λ – коэффициент, зависящий от типа светильников;
h – высота расположения светильников над рабочей поверхностью, м.
Световой поток одного светильника определяется методом коэффициента использования светового потока по формуле:
Fсв = (Еmin x S x К x Z) / (Nсв x g),
где Еmin – гигиеническая норма освещенности;
S – площадь помещения;
К – коэффициент запаса, зависящий от запыленности воздуха в помещении;
Z – коэффициент неравномерности освещения;
N – количество светильников;
g = [A x B] / [h (A + B)].
Световой поток лампы определяется в зависимости от количества ламп в светильнике.
Таким образом, световой поток от одного светильника равен:
Fсв = (200 x 180 x 1,5 x 1,1) / (1 x 1,8) = 3300.
В помещении применимы люминесцентные лампы дневного света типа ЛД65-4.
Нормирование естественного освещения производится с помощью коэффициента естественной освещенности (КЕО), выраженного в процентах:
КЕО = ЕВ x 100 / ЕН,
где ЕВ – освещенность точки внутри помещения, лк;
ЕН – одновременная наружная освещенность горизонтальной поверхности рассеянным светом небосвода (без учета прямых солнечных лучей), лк. Значения КЕО при естественном и совмещенном освещении рабочих поверхностей приведены в табл. 15.
Таблица 15
Коэффициент естественного освещения при естественном и совмещенном освещении рабочих поверхностей
Шум в селитебной зоне
Общее понятие о шуме
Шумы относятся к числу вредных для человека загрязнений окружающей среды. Представление о шуме включает всякие неприятные или нежелательные звуковые воздействия, мешающие восприятию полезных сигналов, нарушающие тишину, оказывающие вредное или раздражающее влияние на организм человека, снижающие его работоспособность.
Шум – это беспорядочное сочетание звуков различной частоты и интенсивности.
Звук – колебания частиц воздушной среды, которые воспринимаются органами слуха человека в направлении их распространения. Звук как физический процесс представляет собой волновое движение упругой среды. Ощущает человек механические колебания с частотами от 20 до 20 000 Гц.
С возрастом этот диапазон суживается, особенно за счет понижения слышимости высоких тонов, до частот 12 000 Гц и даже 6000–8000 Гц.
Ультразвуковой диапазон – свыше 20 кГц, инфразвук – меньше 20 Гц, устойчивый слышимый звук – 1000–3000 Гц.
Физические характеристики шума:
1) интенсивность звука, J (Вт/м2);
2) звуковое давление, P (Па);
3) частота, f (Гц).
При распространении звуковых волн имеет место перенос звуковой энергии, величина которого определяется интенсивностью звука.
Интенсивность звука – звуковая мощность на единицу площади, передаваемая в направлении распространения звуковой волны, количество энергии, переносимое звуковой волной за 1 с через площадь в 1 м2, перпендикулярно распространению звуковой волны. J – интенсивность в точке измерения (Вт/м2).
Интенсивность звука связана со звуковым давлением выражением.
I=VP,
где P – среднеквадратичное звуковое давление;
V – среднеквадратичное значение колебательной скорости частиц в звуковой волне.
Звуковое давление – дополнительное давление воздуха, которое возникает при прохождении через него звуковой волны. Звуковое давление – переменная составляющая давления воздуха, возникающая вследствие колебаний источника звука, накладывающаяся на атмосферное давление.
Минимальное звуковое давление и минимальная интенсивность звуков, едва различимых слуховым аппаратом человека, называются пороговыми.
Чувствительность слухового аппарата человека наибольшая в диапазоне 2000–5000 Гц. Эталонный звук – звук частотой 1000 Гц. При этой частоте порог слышимости по интенсивности 10–12 Вт/м2, а соответствующее ему звуковое давление р0– 210 Па. Порог болевого ощущения Iтах =10 Вт/м2. Различие в 1013 раз.
Учитывая протяженный частотный диапазон (20–20 000 Гц) при оценке источника шума, используется логарифмический показатель, который называется уровнем интенсивности (дБ).
Уровень звука обычно выражают в дБ.
При расчетах и нормировании используется такой показатель, как уровень звукового давления (дБ).
P – звуковое давление в точке измерения (Па);
P0 – пороговое значение 2 x 10–5 (Па).
При распространении звуковых волн в воздухе в каждой точке звукового поля возникают попеременные сжатие и разрежение, что приводит к изменению давления в среде по сравнению с атмосферным (статическим) давлением. Разность между атмосферным давлением и давлением в данной точке звукового поля называется звуковым давлением P (Па).
Звуковое давление, воспринимаемое ухом человека, может меняться от порога слышимости до болевого порога в 10E + 10 раз. При этом ощущение степени изменения звукового давления (субъективное восприятие человеком) согласно психофизическому закону Вебера – Фехнера почти совпадает с логарифмической кривой. Поэтому в акустике для оценки звуковых воздействий на человека принято использовать не абсолютные величины изменения звукового давления, а относительные – логарифмические.
Принято измерять и оценивать относительные уровни интенсивности звука и звукового давления по отношению к пороговым значениям, выраженным в логарифмической форме.
Уровень интенсивности: LI = 10 lg I / 10.
Уровень звукового давления: Lp = 20 lg P / P0.
Слышимый диапазон составляет 0–140 дБ.
Характеристикой непосредственно источника шума является его звуковая мощность (P) – общее количество звуковой энергии, излучаемой в окружающее пространство в секунду.
Уровень звуковой мощности источника шума LP = 10 lg P / P0, где Р0 – пороговая величина, равная 10–12 Вт.
Интенсивность звукового давления в слуховом диапазоне варьирует от 0 до 140 (дБ), что соответствует физическим пределам давления от 2 x 10–5 до 102 Па (1 Па соответствует 1 н/м2).
Если давление P0 = 2 x 10–5 Па представляет порог слышимости, то уровень звукового давления 102 Па (140 дБ) вызывает у человека болевое ощущение, а дальнейшее увеличение давления грозит разрушением слухового аппарата. Каждому увеличению уровня звука на 10 дБ соответствует возрастание звукового давления на порядок, т. е. в 10 раз.
Таблица 16
Характеристика восприятия звука органом слуха человека
Так как органы слуха человека обладают неодинаковой чувствительностью к звуковым колебаниям различной частоты, весь диапазон частот на практике разбит на октавные полосы. Диапазон звуковых частот подразделяется на октавные полосы, характерные тем, что у них верхние частоты вдвое больше нижних граничных частот. Соответственно удваиваются средние частоты смежных полос при переходе к более высоким частотам. Их принято называть среднегеометрическими частотами.
Весь спектр разбит на восемь октавных полос: 45–90; 90–180; 180–360,5600–11 200.
Среднегеометрические частоты октавных полос: 63,125, 250…, 8000.
Октава – полоса частот с границами f1 – f2, где f2 / f1 = 2.
Среднегеометрическая частота fСТ = 63, 125, 250, 500, …
Спектры бывают дискретными, сплошными, тональными.
Шум в диапазоне 20–400 Гц называется низкочастотным, от 400 до 1000 Гц – среднечастотным, более 1000 Гц – высокочастотным. Шум, в котором представлены различные звуковые частоты, считается широкополосным, а если прослушивается звук определенной частоты – тональным. При тональном шуме, который труднее переносится человеком, чем широкополосный, уровень звукового давления на одной из частот октавной полосы превышает уровни на других частотах этой полосы на 6 дБ или более.
По степени стабильности звучания различают постоянный, прерывистый, непостоянный и импульсный шумы.
Постоянный шум характерен колебаниями давления во времени не более 5 дБ.
Прерывистый шум – разновидность постоянного, прерываемого паузами и звучащего между ними не менее 1 с.
Непостоянный шум – шум, интенсивность которого меняется во времени более чем на 5 дБ.
Импульсный шум – непостоянный шум с мгновенными (менее 1 с) изменениями звукового давления.
Звуковой комфорт – 20 дБ; шум проезжей части улицы – 60 дБ; интенсивное движение – 80 дБ; работа пылесоса – 75–80 дБ; шум в метро – 90–100 дБ; концерт – 120 дБ; взлет самолета – 145–150 дБ; взрыв атомной бомбы – 200 дБ.
Характер шума в жилой зоне
Шум в жилой зоне имеет особенно существенное значение для большинства городского населения. Шумовой режим городских территорий определяется воздействием целого ряда источников внешнего шума. К таким источникам прежде всего относятся средства автомобильного, железнодорожного и воздушного транспорта, ряд промышленных предприятий и установок, а также другие шумовые воздействия, связанные с различными видами жизнедеятельности населения.
Источники этого шума можно подразделить на три группы:
1) внемикрорайонные;
2) микрорайонные (квартальные);
3) внутридомовые.
К источникам шума вне микрорайонов относятся транспорт города, транспорт внешний (авиация, железная дорога, водный транспорт), промышленные предприятия, учреждения культуры, искусства, отдыха. К источникам шума в микрорайонах относятся транспортные средства, трудовые процессы, спортивные и игровые площадки, детские ясли-сады, школы.
Шум автотранспорта
Шум автотранспорта является интенсивным, широкополосным, непостоянным. Он, как и шум других средств городского транспорта, является наиболее значимым, так как его генерирует огромное число источников транспортных средств, мигрирующих по всей территории в любое время суток. Интенсивность транспортных потоков на городских магистралях достигает сотен тысяч единиц транспортных средств в час. По данным И. Л. Карагодиной и соавт. (1972) с ростом интенсивности транспортного движения примерно на 1 дБ в год возрастает уровень шума в крупных городах.
Шум грузовых машин большой мощности наряду с низкочастотными составляющими имеет интенсивные высокочастотные компоненты (до 87 дБ на частоте 2000 Гц), шум легковых машин отличается преобладанием низких частот (пик 90 дБ на частоте 125 Гц). Низкие и средние частоты доминируют в шуме автобусов и грузовиков небольшой мощности.
Источниками шума в движущемся автомобиле являются поверхности силового агрегата, системы впуска и выпуска, агрегаты трансмиссий, колеса в контакте с дорожным покрытием, колебания подвески и кузова, взаимодействие кузова с потоком воздуха. В шумовых характеристиках проявляются общий технический уровень и качество автомобиля и дороги.
Шум, издаваемый автомобилем, возрастает на 8–10 дБ при увеличении от минимума до максимума числа оборотов двигателя, на 2 дБ – у дизельных двигателей и на 10–15 дБ – у карбюраторных двигателей при увеличении нагрузки.
Транспортные факторы (интенсивность, состав, скорость движения, эксплуатационное состояние автомобилей, вид перевозимых грузов) оказывают наибольшее влияние на уровень шума. Немалое значение имеют и дорожные факторы. Для грузовых машин наибольший шум создает двигатель, особенно когда ему приходится работать на пониженных передачах. Но для легковых машин важнее шум качения. Конечно, вряд ли можно ожидать, что в целях сокращения шума будут ограничивать мощность грузовиков или снижать сцепление шин с покрытием, уменьшая этим безопасность движения на высоких скоростях. Проведенные в ФРГ исследования не выявили особого преимущества пористых или очень гладких покрытий, хотя по данным МАДИ шероховатые покрытия, особенно в мокром состоянии, могут увеличивать шум на 5–7,5 дБ.
Общий уровень шума автотранспортных средств (легкового автомобиля – 83–86 дБ, автобуса – 82–90 дБ, небольшого грузовика – 85–86 дБ, мощного грузовика – до 92 дБ) весьма значителен.
Интенсивность уличного шума, в связи с тем что транспортный шум является непостоянным, зависит от интенсивности транспортных потоков. Эта зависимость была изучена И. Л. Карагодиной, Г. Л. Осиповым, И. А. Шишкиным (1972).
Материалы исследований свидетельствуют, что при увеличении интенсивности потока расчетный и эквивалентный уровни шума возрастают от 70–71 дБ при потоке 100 экипажей в час до 76–77 дБ при потоке 1000 экипажей в час, до 82 дБ при потоке 10 000 экипажей в час. При плохом состоянии проезжей части уровень шума соответственно возрастает.
Шум от городского электротранспорта также достигает значительных уровней: до 71–74 дБ – от троллейбусов, до 85–90 дБ – от трамваев. Шум троллейбусов преимущественно низкочастотный; шум трамвая характеризуется высокими уровнями на средних частотах.
Наземные линии метрополитена являются источниками среднечастотного непостоянного шума с уровнем звука в 7 м от оси пути состава 80–85 дБ.
Шум городского транспорта характерен суточными колебаниями интенсивности в связи с изменением плотности и состава транспортных потоков.
Шум железнодорожного транспорта. Во время движения состава среднечастотный шум генерируется при работе двигателя и ходовой части локомотива, а также в результате движения вагонных тележек, ударов и дребезжания деталей тормозных систем и сцепки вагонов.
Шум тепловоза составляет 100–110 дБ у выхлопной трубы и 83–89 дБ на расстоянии 50 м, шум околовагонных колес при скорости 70–80 км/ч достигает 125–130 дБ. Уровни звука поездов (грузовых, пассажирских, электрических) при скорости движения 50–60 км/ч равны 90–92 дБ. На границе грузовых, сортировочных станций, депо уровни звука достигают 90–101 дБ.
Авиационный транспортный шум распространяется на жилую территорию в результате недостаточного удаления аэропортов и в случаях, когда направления взлета и захода на посадку пересекают жилую территорию.
Одними из наиболее мощных источников шума являются вертолеты и самолеты, особенно сверхзвуковые. Значителен шум турбиновинтовых реактивных самолетов: взлет самолета – 145–150 дБ. При этом в жилой зоне некоторых городов создается значительная интенсивность звука – от 80 до 100 дБ А (г. Минеральные воды, Сыктывкар, Новосибирск, Екатеринбург). Шум создается также при прогреве моторов и рулении (до 70–90 дБ в г. Сыктывкаре на расстоянии 1 км от взлетно-посадочной полосы).
Шумы самолетов обычно низкочастотные, но в широкополосном спектре шума реактивных самолетов высокие уровни звукового давления генерируются в области частот до 2000 Гц.
На интенсивность шума и площадь распространения существенное влияние оказывают метеорологические условия (скорость ветра, распределение температуры воздуха по высоте, облака и осадки).
Особенно острый характер проблема шума приобрела в связи с эксплуатацией сверхзвуковых самолетов. С ними связаны шумы, звуковой удар и вибрация жилищ вблизи аэропортов. Современные сверхзвуковые самолеты порождают шумы, интенсивность которых значительно превышает предельно допустимые нормы.
Шумы, создаваемые самолетами, вызывают ухудшение слуха и другие болезненные явления у работников наземных служб аэропорта, а также у жителей населенных пунктов, над которыми пролетают самолеты. Отрицательное воздействие на людей зависит не только от уровня максимального шума, создаваемого самолетом при полете, но и от продолжительности действия, общего числа пролетов за сутки и фонового уровня шумов.
Производственные шумы в большинстве случаев имеют локальное значение, их уровень в жилой зоне зависит от уровня в месте образования, гасящих свойств конструктивных элементов производственных зданий и сооружений, наличия экранирующих элементов, удаленности источника от жилой застройки и др. Интенсивность, частотный состав и характер этих шумов, время и длительность их генерации могут варьировать в широких пределах.
Внутримикрорайонные шумы возникают в результате движения транспортных средств и механизмов (автомашин, мусороуборочных машин и др.), ручных операций по уходу за территорией и перегрузки товаров, материалов, отходов, тары, игр на детских и спортивных площадках и т. д.
Шум механизмов и транспортных средств по своим параметрам приближается к уличному и может достигать уровней 75–90 дБ. Импульсный шум с уровнями звука до 70 дБ возникает при разгрузке товаров, подвозимых к магазинам. Разнообразные по уровню (62–78 дБ) и частотной характеристике шумы возникают при спортивных играх в зависимости от характера инвентаря, вида игры и активности голосовой связи.
Внутридомовые шумы образуются при работе санитарно-технического (водопровода, канализации и др.) и транспортного (лифтов, мусоропроводов) оборудования в жилой части здания, при эксплуатации технологического оборудования объектов, встроенных в жилой дом, при работе в квартирах электробытовых приборов, радио– и видеоаппаратуры, играх детей и т. д. Эти шумы имеют разнообразные частотные спектры, различный характер и значительную интенсивность (до 72–90 дБ).
Влияние городского шума на организм человека
Основным фактором, определяющим степень влияния шума на условия жизни и здоровье населения, является уровень звукового давления.
Специфическое действие шума – медленно прогрессирующее снижение слуха по типу кохлеарного неврита (нейросенсорная тугоухость за счет нарушения звуковоспринимающего аппарата).
Неспецифическое действие шума – сосудистые неврозы, неврастении.
Шумы малой интенсивности (до 60 дБ) оцениваются человеком психологически на основе условий восприятия. Для этого уровня шумов характерно субъективное отношение к ним – сенсибилизация к шуму постоянного источника, терпимое отношение. В связи с большим количеством звуковых сигналов постоянный шум малой интенсивности, воздействуя на кору больших полушарий головного мозга, вызывает напряжение корковых процессов, состояние утомления и беспокойства, как утверждали Брум, Злемел (1962), Копен (1955), Смит, Лайд, Карагодина и соавт. (1972).
Таблица 17
Допустимые уровни звукового давления, уровни звука, эквивалентные и максимальные уровни звука проникающего шума в помещениях жилых и общественных зданий и шума на территории жилой застройки
Относительно более чувствительно ухо человека к звукам в пределах 800–6000 Гц и особенно 3000–4000 Гц.
При равной интенсивности, тональности и длительности звучания хуже переносятся шумовые помехи в ночное время суток.
Раздражающее воздействие звука (шума) на человека зависит от его интенсивности, спектрального состава и продолжительности воздействия. Шумы со сплошными спектрами менее раздражительны, чем шумы узкого интервала частот. Наибольшее раздражение вызывает шум в диапазоне частот 3000–5000 Гц. (см. табл. 17).
По В. И. Пальгову (1962), количество жалоб на сильное раздражающее действие шума составило при интенсивности уличного шума 70 дБ – 38 %, при уровне 71–75 дБ – 58 %, при 76–80 дБ – 72 %. По И. Л. Карагодиной и соавт., в квартирах, обращенных окнами на улицу, при уровнях шума 50–80 дБ проживающие жалуются на раздражающее действие шума, нарушение сна, помехи умственному труду, затруднение разговора и т. п. Жаловались 87–100 % опрошенных, жалобы появлялись при превышении уровня 35 дБ.
Шум низкочастотного спектра со спадом 3–6 дБ на октаву, имеющий суммарный уровень звука 35 дБ, не вызывает физиологических сдвигов; показатели порогов слуховой чувствительности, световой чувствительности адаптированного к темноте глаза, глубины сна, полученные при этой интенсивности, аналогичны данным при исследовании в тишине (в условиях звуковой изоляции). При суммарном уровне звука 40 дБ возникают нестойкие изменения слуховой чувствительности с восстановлением слуха на частотах 63, 125, 250 Гц через 3,5–10 мин. Показатели световой чувствительности глаз при воздействии шума в течение 5 и 15 мин снижаются и затем постепенно возвращаются к норме; наступают сдвиги показателей глубины сна (период засыпания – в норме не более 20 мин; продолжительность спокойного сна – в норме 70–2 %; коэффициент активности – в норме 0,09). При суммарном уровне звука 50 дБ и воздействии шума в течение 50 мин происходит снижение остроты слуха на частоте 63 Гц на 14 дБ, на частоте 125 Гц – до 23 дБ, на частоте 250 Гц – до 22 дБ, возвращаясь к норме после выключения источника шума через 10–20 мин; световая чувствительность глаза быстро снижается, медленно восстанавливается после прекращения действия шума (30 мин и дольше); наблюдаются изменения показателей нарушения сна.
Многочисленными исследованиями установлено, что в период адаптации к звуковым раздражителям чувствительность органов слуха к ним снижается, а после прекращения действия раздражителя чувствительность восстанавливается. Если раздражитель действует чрезмерно сильно и длительное время, то быстро наступает утомление. По своему утомляющему воздействию точка звука неравноценна (чем выше звук, тем это воздействие больше). Так, звуки частотой 2000–4000 Гц оказывают утомляющее действие уже при 80 дБ. Отмечается стойкое понижение слуха при воздействии шума тоном 4096 Гц (независимо от частоты шума). Шум интенсивностью более 90 дБ даже при низкой частоте оказывал утомляющее действие, по данным В. И. Новроцкого (1967).
Показатели физиологических функций сердечно-сосудистой системы при уровнях шума 60–70 дБ меняются несущественно, но при уровне звука 80 дБ наряду с тенденцией к понижению систолического и повышению диастолического давления возникают колебания артериального давления до 20–30 мм рт. ст., изменения в ЭКГ (в результате удлинения сердечного цикла и уменьшения частоты сердечных сокращений, снижается амплитуда пульсовой волны, как следствие, сужения кожных артерий).
При интенсивности шума 145–140 дБ возникают вибрации в мягких тканях носа и горла, а также в костях черепа и зубах. Если интенсивность превышает 140 дБ, то начинают вибрировать грудная клетка, мышцы рук и ног, появляются боль в ушах и голове, крайняя усталость и раздражительность; при уровне шума свыше 160 дБ может произойти разрыв барабанных перепонок. Однако шум губительно действует не только на слуховой аппарат, но и на центральную нервную систему человека, работу сердца, служит причиной многих других заболеваний.
Шум относится к тем факторам, к которым нельзя привыкнуть. Человеку лишь кажется, что он привык к шуму, но акустическое загрязнение, действуя постоянно, разрушает здоровье человека. Акустическое загрязнение оказывает неблагоприятное воздействие на все системы организма. В первую очередь страдают нервная, сердечно-сосудистая системы и органы пищеварения. Существует зависимость между заболеваемостью и длительностью проживания в условиях акустического загрязнения. Рост болезней наблюдается после проживания в течение 8–10 лет при воздействии шума с интенсивностью выше 70 дБ. Городской шум можно отнести к причинам возникновения гипертонической болезни, ишемической болезни сердца. Под воздействием шума ослабляется внимание, снижается физическая и умственная работоспособность. Постоянное воздействие шума (более 80 дБ) приводит к гастриту и язвенной болезни желудка.
Таким образом, непосредственно в период действия звука и некоторое время после того в организме человека возникают изменения функций слухового и зрительного анализаторов, центральной нервной и сердечно-сосудистой систем. Под влиянием шума ограничивается способность зрительной и акустической ориентации человека в окружающей среде. В связи с напряжением органов и систем организма, снижением возможности освободиться от утомления после физической и умственной деятельности в дневное время под влиянием шума снижается продуктивность умственного труда.
Отрицательное влияние шума на организм детей установлено рядом исследований. В частности, доказано В. И. Пальтовым (1964), что под влиянием шума, интенсивность которого превышает 45 дБ, у школьников понижается слуховая чувствительность, снижается умственная работоспособность, возрастает содержание в крови адреналиноподобных веществ (с 2,78 % при уровне шума 30 дБ до 4,11 % при шуме 47 дБ), снижается количество сахара.
Очень чувствительны к шуму больные люди, отмечают С. А. Солдаткина (1967) В. И. Пальгов, С. И. Эппельс (1968), особенно с заболеваниями нервной и сердечно-сосудистой систем, а также тяжелые больные в послеоперационный период. Под влиянием шума у них изменяются некоторые показатели, характеризующие функции нервной и сердечно-сосудистой систем, задерживается выздоровление и удлиняется продолжительность лечения в стационаре.
Эффект действия шума на человека зависит также от частоты звуковых колебаний. Раздражающее влияние звуков усиливается тональными и высокочастотными составляющими. Оно возрастает с увеличением частоты, особенно начиная с 700 Гц. От частоты звука зависят возможность и степень утомления слухового анализатора – большей высоте звука сопутствует более выраженный эффект. Наряду с этим относительно более раздражающими, чем звуки средней части речевого спектра, являются шумы низкочастотные (около 100 Гц).
Существенны ближайшие и отдаленные последствия воздействия шума на вегетативную нервную систему ввиду ее связи с органами чувств, по данным Е. Ц. Андреевой-Галаниной и соавт. (1972). Уровень шума 40–50 дБ может быть причиной вегетативной реакции у спящего человека. Длительность восстановления вегетативных функций находится в прямой зависимости от продолжительности шума, от неожиданности его возникновения. Неблагоприятное влияние оказывает прерывистый, импульсный шум. Привыкание к шуму на вегетативных реакциях не проявляется.
К наиболее выраженным вегетативным реакциям относятся расстройства периферического кровообращения, в частности сужение капилляров кожи и слизистых оболочек. Постоянное действие шума в результате нарушения секреторной и моторной функций желудка может способствовать возникновению гастрита и язвенной болезни. Увеличение интенсивности городского шума способствует росту заболеваемости населения неврозами.
Шум больших городов приводит к снижению остроты слуха у населения. Ослабление слуха под влиянием шума, известное на протяжении веков как следствие вредных профессиональных условий, в современных городах приобретает новую причинную обусловленность. Влияние городского шума становится соизмеримым с действием производственных условий.
Отрицательное действие интенсивного шума на население города может отражаться на уровне и структуре общей заболеваемости. По данным В. И. Пальгова (1964), после 10 лет проживания в условиях воздействия шума интенсивностью 80 дБ и выше отмечается рост заболеваемости населения.
Гигиеническая регламентация уровней шума в жилой зоне
Для предотвращения неблагоприятного влияния шума на здоровье человека решающее значение имеют санитарно-гигиенические нормативы допустимых уровней звука, поскольку они определяют разработку тех или иных мер по шумозащите в городах.
В результате многочисленных и разносторонних исследований были определены недействующие и пороговые уровни шума, которые легли в основу нормирования. За допустимый был принят такой уровень (ПДУ) шума, при длительном действии которого не происходит отрицательных изменений в физиологических реакциях, наиболее чувствительных и адекватных шуму, и в субъективном самочувствии.
Допустимый уровень шума – это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму.
Нормируемыми параметрами постоянного шума являются уровни звукового давления L, дБ, в октавных полосах со среднегеометрическими частотами: 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц. Для ориентировочной оценки допускается использовать уровни звука LA, дБ. Слуховой аппарат человека более чувствителен к звукам высоких частот, поэтому нормируемые значения звукового давления уменьшаются с увеличением f