После «Структуры научных революций»

Читать онлайн После «Структуры научных революций» бесплатно

Thomas S. Kuhn

THE ROAD SINCE STRUCTURE

Перевод с английского А.Л. Никифорова

Дизайн обложки: Э.Э. Кунтыш

Исключительные права на публикацию книги на русском языке принадлежат издательству AST Publishers. Любое использование материала данной книги, полностью или частично, без разрешения правообладателя запрещается.

Печатается с разрешения издательства The University of Chicago Press, Chicago, Illinois, USA

© The University of Chicago, 2000

© Перевод. АЛ. Никифоров, 2011

© Издание на русском языке AST Publishers, 2014

Предисловие

Предисловие Тома к ранней подборке его философских статей, «The Essential Tension», опубликованной в 1977 г., – это история исследований, которые привели его к написанию «Структуры научных революций» (1962 г.) и продолжались после ее выхода в свет. Там были упомянуты некоторые детали его биографии, разъяснявшие, каким образом от физики он перешел к историографии и философии.

В данной книге внимание сосредоточено на философских и метаисторических вопросах, которые, как утверждает автор, «сегодня… интересуют меня в наибольшей степени и о которых я уже давно хотел высказаться». Во введении к этой новой книге издатели связали каждую статью с актуальными и потому непрестанно рассматриваемыми проблемами: это важный момент в непрерывном поиске решения. Книга представляет собой не цель исследований Тома, а этап, на котором эти исследования были прерваны.

Название книги опять-таки намекает на путешествие, а завершающая часть, содержащая интервью Тома Афинскому университету, есть не что иное, как более подробный рассказ о его жизни. Я чрезвычайно рада, что интервьюеры и издательский совет журнала «Neusis», где впервые появилось это интервью, разрешили опубликовать его здесь.

Я присутствовала при этом и была восхищена знаниями, чуткостью и искренностью коллег, принимавших нас в Афинах. Том чувствовал себя абсолютно непринужденно и говорил свободно, предполагая, что просмотрит интервью перед его выходом в печать. Однако время ушло, и эта задача досталась мне и другим участникам.

Я знаю, Том внес бы в текст существенные поправки – не вследствие педантичности, которая не была ему свойственна, а в силу присущей ему деликатности. В его беседе с афинскими коллегами есть выражения и оценки, которые он наверняка поправил бы или вычеркнул. Однако не думаю, что это должна сделать я или кто-то другой. По этой же причине мы не стали исправлять некоторые грамматические нестыковки устной речи и завершать незаконченные фразы.

Я должна поблагодарить за помощь коллег и друзей, в частности Карла Хафбауэра, который поправил мелкие ошибки в хронологии и помог расшифровать некоторые имена.

Обстоятельства, при которых Джим Конант и Джон Хауджиланд взялись за издание этой книги, изложены на следующих страницах. Могу лишь добавить: они сделали все, чтобы оправдать доверие Тома, и я им искренне благодарна. Столь же благодарна Сьюзен Абрамс за ее дружеские и профессиональные советы как в данном проекте, так и в прошлом. Мне также во всем и всегда оказывали помощь Сара, Лиза и Натаниел Кун.

Джехейн Р. Кун

От издателей

Изменения случаются

Почти каждый знает, что в «Структуре научных революций» Томас Кун обосновал мысль о том, что история науки не является непрерывной и кумулятивной, она часто прерывается более или менее радикальными «сменами парадигм». Менее известны собственные попытки Куна как можно лучше понять и описать эпизоды в развитии науки, которые связаны с такими важными изменениями. Труды, собранные в этой книге, представляют собой более поздние попытки переосмыслить и расширить его собственные «революционные» гипотезы.

Содержание книги мы обсуждали вместе с Куном незадолго до его смерти. Хотя он уже не мог вникать в детали, зато имел вполне определенное представление о том, чем должна стать книга. Стараясь приобщить нас к своим замыслам, он высказывал разнообразные пожелания, рассматривал доводы «за» и «против» при обсуждении каких-то случаев и ситуаций, сформулировал четыре основные идеи, которым мы должны были следовать. Для тех, кого интересует, как осуществлялся отбор статей, мы кратко изложим эти основные идеи.

Первые три идеи, которыми мы должны были руководствоваться, основывались на представлении Куна о том, что данная книга должна быть продолжением его «The Essential Tension», опубликованного в 1977 г. В тот сборник Кун включил только статьи, в которых, по его мнению, разрабатывались философски важные темы (хотя и в контексте исторических, а также историографических соображений), в отличие от вопросов, посвященных рассмотрению конкретных исторических эпизодов. Поэтому руководящие идеи были следующие: 1) отбирать статьи явно философского характера; 2) причем написанные в последние два десятилетия жизни Куна[1]; 3) это должны быть весомые работы, а не краткие заметки или выступления.

Четвертая идея относилась к материалу, рассматриваемому Куном в качестве основы для написания книги, над которой он работал в последние годы. Поскольку мы считаем своим долгом подготовить к изданию именно данную книгу, то решили отказаться от этого материала. Под ограничение попали три важных цикла лекций: «Природа концептуальных изменений» (Перспективы философии науки, Университет Нотр-Дам, 1980), «Развитие науки и лексические изменения» (Thalheimer лекции, университет Джона Хопкинса, 1984) и «Наличие прошлой науки» (Шермановские лекции, Университетский колледж, Лондон, 1987). Хотя записи этих лекций получили распространение и порой цитировались в публикациях некоторых авторов[2], Кун не хотел, чтобы они в таком виде вошли в эту книгу.

* * *

Статьи, вошедшие в данную книгу, посвящены четырем основным темам. Во-первых, Кун повторяет и защищает мысль, восходящую к «Структуре научных революций» (в дальнейшем просто «Структура»), что наука представляет собой когнитивное эмпирическое исследование природы, проявляющее прогресс особого рода, хотя этот прогресс нельзя мыслить как «все большее приближение к реальности». Прогресс скорее выражается в виде совершенствования технической способности решать головоломки, контролируемой строгими, хотя и всегда привязанными к традиции, стандартами успеха или неудачи. Этот вид прогресса, в своем наиболее полном выражении присущий только науке, является предпосылкой чрезвычайно тонких (и часто весьма дорогих) исследований, характерных для научного познания и для получения удивительно точного и подробного знания.

Во-вторых, Кун развивает идею, опять-таки восходящую к «Структуре», что наука, по существу, – социальное предприятие. Это отчетливо проявляется в периоды сомнений, чреватых более или менее радикальными изменениями. Только благодаря этому индивиды, работающие в рамках общей исследовательской традиции, способны приходить к разным оценкам возникающих перед ними трудностей. При этом одни склоняются к разработке альтернативных (часто кажущихся нелепыми, как любил подчеркивать Кун) возможностей, в то время как другие упорно продолжают пытаться решать проблемы в рамках признанной структуры.

Факт, что при возникновении таких затруднений последние составляют большинство, важен для многообразных научных практик. Проблемы обычно могут быть решены – и в конечном счете решаются. При отсутствии достаточного запаса настойчивости в поиске решений ученый не смог бы дойти до конца в тех редких, но определяющих случаях, когда усилия осуществить полный концептуальный переворот полностью оправдываются. С другой стороны, если бы никто не пытался разрабатывать альтернативы, крупные преобразования не смогли бы возникнуть даже тогда, когда они действительно необходимы.

Таким образом, именно социальная научная традиция способна «распределять концептуальные риски» так, как не смог бы сделать ни один индивид, что позволяет ей обеспечивать долговременную жизнеспособность науки.

В-третьих, Кун разъясняет и подчеркивает аналогию между прогрессивным развитием науки и биологической эволюцией – аналогию, которой он лишь мимоходом касается на последних страницах «Структуры». Разрабатывая эту тему, он отходит от своей первоначальной схемы, согласно которой периоды нормальной науки с единой областью исследования иногда разрываются сокрушительными революциями. Вместо этого он вводит новую схему, где периоды развития в рамках единой традиции иногда сменяются периодами «расщепления» на две различные традиции с отличающимися областями исследования. Конечно, сохраняется возможность, что одна из этих традиций постепенно ослабеет и умрет. В этом случае мы возвращаемся к прежней схеме революций и смены парадигм.

Однако в истории науки обе последующие традиции часто не вполне похожи на общую для них предшествующую традицию и развиваются как новые научные «специальности». В науке видообразование проявляется как специализация.

Наконец, что самое важное, последние десятилетия своей жизни Кун посвятил защите, прояснению и разработке идеи несоизмеримости. Эта тема также была затронута в «Структуре», но не прозвучала там достаточно отчетливо. Именно идея несоизмеримости подверглась наиболее серьезной критике в философской литературе, и Кун не был удовлетворен тем, как она была представлена в «Структуре». В своих более поздних работах Кун рассматривал соизмеримость и несоизмеримость как термины, обозначающие отношения между лингвистическими структурами.

В основе такого лингвистического истолкования понятия несоизмеримости лежат два важных момента.

Первый момент: Кун тщательно уточняет различие между разными, но соизмеримыми языками (или частями языков) и несоизмеримыми языками. Между первыми перевод вполне возможен: все, что можно высказать в одном языке, можно высказать и в другом (хотя это может потребовать значительных усилий). Однако между несоизмеримыми языками точный перевод невозможен (хотя, двигаясь шаг за шагом, можно прийти к достаточно адекватной коммуникации).

Идея несоизмеримости, представленная в «Структуре», была подвергнута критике на том основании, что она затемняет представление о том, каким образом ученые, работающие в разных парадигмах, способны общаться друг с другом (хотя бы обсуждать свои расхождения). Критике подверглись также объяснения прошлых научных парадигм, встречающиеся на страницах самой «Структуры»: не разрушает ли это доктрину несоизмеримости, когда дают объяснения (в современном английском языке) того, как употреблялись совершенно чуждые нам научные термины.

Кун отвечает на эти возражения, ссылаясь на различие между переводом языка и обучением языку. Если иностранный язык непереводим на родной язык определенного человека, это еще не означает, что человек не может изучить его. Иначе говоря, нет оснований, запрещающих индивиду изучить и понимать два языка, которые взаимно непереводимы. Процесс понимания такого чужого языка (скажем, языка исторических текстов) Кун называет интерпретацией, а также, чтобы подчеркнуть его отличие от так называемой радикальной интерпретации (в духе Дэвидсона), – герменевтикой.

Его собственные разъяснения терминологии, скажем, «физики» Аристотеля или «химии» Флогистона, дают примеры герменевтической интерпретации и в то же время помогают читателю изучить язык, несоизмеримый с его собственным языком.

Второй момент. Несоизмеримость встречается в двух видах научных контекстов. Техническая научная терминология, указывает Кун, всегда присутствует в семействах взаимосвязанных терминов. Он рассматривает две разновидности таких семейств. В первом варианте эти термины являются терминами видов, Кун называет их «таксономическими категориями». Они всегда образуют строгую иерархию и подчиняются «принципу непересекаемости»: ни одна пара таких категорий или видов не может иметь общего образца, если только одна из них полностью не подпадает под другую.

Любая таксономия, адекватная для целей научного описания и объяснения, строится на основе неявного принципа непересекаемости. Значения релевантных видовых терминов, задающие такие таксономические категории, по мнению Куна, отчасти заданы этой неявной предпосылкой: значения терминов зависят от их положения в иерархии и отношений взаимного исключения (плюс, конечно, усвоенное умение опознавать их элементы). Структура, которую Кун называет «словарем», обладает значительным эмпирическим содержанием, поскольку всегда существует множество способов («критериев») установления принадлежности объекта к любой данной категории. Иные таксономические структуры (с иными отношениями подчинения и исключения) будут неизбежно несоизмеримыми, поскольку их различия выражаются в терминах с иными значениями.

Другая разновидность терминологических семейств (также называемая «словарем») включает в себя термины, значения которых отчасти детерминированы научными законами. Наиболее понятный пример – количественные переменные, входящие в законы, имеющие форму уравнений: например, вес, сила и масса в динамике Ньютона. Хотя этот вариант не получил разработки в сохранившихся текстах Куна, он полагал, что и здесь значения релевантных фундаментальных терминов отчасти определяются их вхождением в утверждения – в данном случае в научные законы, – которые категорически запрещают определенные возможности. Следовательно, любые изменения в истолковании или в формулировке важных законов должны найти выражение, согласно мнению Куна, в фундаментальных расхождениях в истолковании (следовательно, в значениях) соответствующих терминов и, таким образом, привести к несоизмеримости.

Данная книга состоит из трех частей. Первая и вторая – это статьи, упорядоченные хронологически, третья часть – интервью. Часть первая содержит пять статей, представляющих развитие воззрений Куна от начала 1980-х до начала 1990-х гг. Две из них – краткие ответы на комментарии, высказанные в связи с их первой публикацией. Эти ответы можно оценить, конечно, только в контексте самих комментариев, однако Кун постарался в каждом случае суммировать те пункты, на которые он отвечал, поэтому его ответы добавляют ясности основному массиву статей. Шесть составляющих вторую часть книги – это отклик Куна на работы других философов, часто, хотя и не всегда, критикующих или развивающих идеи его основной работы. Наконец, часть третья – откровенное интервью, которое Кун дал в Афинах в 1995 г. Аристиду Балтасу, Костасу Гавроглу и Василике Кинди.

Часть 1. Переосмысление научных революций

В статье 1 «Что такое научные революции?» (написанной около 1981 г.) дан философский анализ трех исторических научных потрясений (связанных с теориями движения, гальваническим элементом и излучением черного тела), иллюстрирующих зарождающийся подход Куна к истолкованию таксономических структур.

Статья 2 «Соизмеримость. Сравнимость. Коммуникативность» (1982) защищает важность несоизмеримости в ответ на принципиальные упреки в том, что: 1) она невозможна, поскольку понимание требует переводимости, следовательно, соизмеримости; 2) будь она возможна, отсюда следовало бы, что важнейшие научные изменения нельзя рассматривать как реакцию на полученные эмпирические данные, поэтому их следует считать иррациональными. Различные варианты этих упреков были высказаны Дональдом Дэвидсоном, Филипом Китчером и Хилари Патнэмом, чьи имена упоминаются в статье.

В статье 3 «Возможные миры в истории науки» (1989) разрабатывается идея, высказанная, но не разъясненная в «Структуре», о том, что несоизмеримые научные языки (называемые теперь словарями) дают доступ к разным множествам возможных миров. При рассмотрении этой идеи Кун дистанцируется от семантики возможных миров и от каузальной теории референции (а также от связанных с ней форм «реализма»).

Статья 4 «Путь после “Структуры”» (1990) представляет собой краткий набросок книги, над которой Кун работал больше десяти лет (и которую так и не закончил). Хотя важнейшими темами книги должны были стать реализм и истина, главным предметом обсуждения оказывается несоизмеримость. Кун особо подчеркивает и разъясняет, почему несоизмеримость не несет угрозы научной рациональности и ее эмпирическому базису. Таким образом, эту книгу отчасти можно понять как отрицание того, что Кун считал крайностями так называемой «сильной программы» в философии (или социологии) науки. В заключительной части статьи (и более подробно в Шермановских лекциях) он характеризует свою позицию как «постдарвиновское кантианство», поскольку она предполагает существование чего-то похожего на невыразимую, но неизменную и прочную «вещь в себе». Ранее Кун не принимал понятия «вещи в себе» (см. ст. 8) и позже вновь отверг это понятие и основания, по которым его временно принял.

В статье 5 «Проблемы исторической философии науки» (1992) рассматривается традиционная философия науки и новая модная «сильная программа» в социологии науки, отмечаются ошибки в той и в другой. Кун высказывает предположение: «затруднения» социологии науки обусловлены тем, что она сохраняет традиционное понимание знания, хотя и замечает, что наука не живет согласно этому пониманию. Требуемое переосмысление, возвращающее на свое место рациональность и эмпирические данные, должно поставить в центр внимания трезвую оценку не самих убеждений, а изменений убеждений.

Часть 2. Комментарии и ответы

Статья 6 «Размышления о моих критиках» (1970) является самым старым сочинением в этом сборнике и единственной статьей, которая предшествует книге «The Essential Tension». Вопрос о ее включении в эту новую книгу мы обсуждали с самим Куном, который высказывался и «за» и «против». Решение так и повисло в воздухе. С одной стороны, она не укладывается в «третью руководящую линию», упомянутую выше. Кроме того, она содержит главным образом коррекцию разнообразных ошибочных прочтений «Структуры» – коррекцию, которая отнюдь не является необходимой. С другой стороны, многие из этих ошибочных прочтений сохраняются и нуждаются в коррекции, что и осуществлено в данной статье четко и ясно. В конечном итоге Кун оставил это на наше усмотрение. Мы решили опубликовать ее, поскольку статья все еще сохраняет актуальность и поскольку сборник, в котором она впервые появилась, «Критицизм и рост знания», давно распродан.

В статье 7 «Изменение теории как изменение структуры: комментарий к формализму Снида» (1976) содержится в высшей степени доброжелательное рассмотрение теоретико-модельного формализма, предложенного Йозефом Снидом для уточнения семантики научных теорий и усовершенствованного Вольфгангом Штегмюллером. Хотя статья представляет особый интерес для тех, кто уже знаком с подходом Снида – Штегмюллера, замечания Куна не касаются технических деталей и имеют более широкое значение. Особый интерес у него вызывает способ, благодаря которому (согласно этому подходу) основные термины теории приобретают значительную часть своего содержания из множества образцовых применений. Важно, что существуют разные применения, взаимно ограничивающие друг друга (благодаря теории), что позволяет избежать порочного круга. Важно также, что эти применения являются образцовыми, то есть такими, на рассмотрении которых приобретается мастерство, применимое к новым случаям. По поводу этого подхода Кун высказывает лишь один упрек, хотя и серьезный: он не оставляет места для теоретической несоизмеримости.

Статья 8 «Метафоры в науке» (1979) представляет собой отклик на рассуждения Ричарда Бойда об аналогиях между научной терминологией и метафорами обыденного языка. Хотя во многих важных пунктах Кун с ним согласен, он все-таки выражает сомнения по поводу специфического способа, посредством которого Бойд расширяет свой подход, чтобы включить в него каузальную теорию референции, в частности термины естественных видов. Кун называет себя, как и Бойда, «неразвитым реалистом», однако приводит существенное различие. В частности, отвергает метафору Бойда, согласно которой научные теории (все более тщательно) «разрезают природу на кусочки». Эти «кусочки» природы кажутся ему похожими на вещь в себе Канта, которую он в то время отвергал.

Статья 9 «Рациональность и выбор теории» (1983) – это доклад Куна на симпозиуме, посвященном философии Карла Гемпеля. Здесь он говорит о том, какое влияние в разных ситуациях оказал на него Гемпель: осознал ли он (Кун) различие между объяснением выбора теории и его оправданием? Если считать несомненным, что выбор одной из конкурирующих теорий в действительности опирается на их способность решать головоломки (включая точность, общность и т. п.), мы еще не получаем философского оправдания этому выбору до тех пор, пока сами эти критерии не получили оправдания как нечто, не зависящее от произвола. Кун отвечает на это, что критерии в важном отношении не являются произвольными (являются «необходимыми»), поскольку принадлежат к эмпирически содержательной таксономии дисциплин. Ориентация именно на такие критерии отличает научное исследование от иных видов профессиональной деятельности (искусства, права, техники и т. п.), поэтому «наука» есть точный видовой термин.

В статье 10 «Естественные и гуманитарные науки» (1980) рассматривается в основном получившее широкую известность сочинение Чарлза Тейлора «Интерпретация и науки о человеке», которым Кун восхищался. Он был готов согласиться с Тейлором, что естественные и гуманитарные науки различны, но расходился с ним во мнении о том, в чем состоит это различие. Обосновывая мысль, что естественные науки также имеют «герменевтическую основу», он признает, что в отличие от современных гуманитарных наук они не являются герменевтическими. Кун обсуждает вопрос о том, выражает ли это существенное различие между данными классами наук или же просто указывает на то, что большая часть гуманитарных наук все еще не достигла той стадии развития, на которой происходит утверждение одной парадигмы.

Статья 11 «Послесловия» (1993), как и статья 6, представляет собой заключительную главу в сборнике сочинений, посвященных в значительной мере обсуждению собственных идей Куна («Изменения мира»: Томас Кун и природа науки», изд. Пол Хорвич). Однако здесь Кун ведет конструктивный диалог с работами, которые сами носят прежде всего конструктивный характер. Главными темами являются таксономические структуры, несоизмеримость, социальный характер научного исследования, истина, рациональность и реализм. Рассмотрение этих тем представлено здесь в виде кратких набросков некоторых центральных идей новой книги Куна, над которой он продолжал работать до самой смерти.

Часть 3. Беседы с Томасом С. Куном

«Беседы с Томасом С. Куном» (1997) – это откровенная интеллектуальная автобиография в форме интервью, которое он дал Аристиду Балтасу, Костасу Гавроглу и Василике Кинди в Афинах в конце 1995 г. Оно приведено с небольшой редакторской правкой, чтобы сохранить авторский стиль.

Книга заканчивается библиографией опубликованных работ Куна.

Джеймс Конант и Джон Хауджиланд

Часть 1

Переосмысление научных революций

Глава 1

Что такое научные революции?

Статья «Что такое научные революции?» впервые была опубликована в «The Probabilistic Revolution», volume I: Ideas in History, edited by Lorenz Kruger, Lorraine I Daston, and Michael Heidelberger (Cambridge, MA: MIT Press, 1987). Три примера, образующие основу статьи, были представлены в первой из трех лекций, объединенных общим заглавием «Природа концептуального изменения» и прочитанных в конце ноября 1980 г. в университете «Нотр-Дам» в рамках цикла лекций «Перспективы философии науки». Почти в том же виде, но под названием «От революций к важнейшим признакам» эта статья была прочитана на ежегодной конференции Общества когнитивной науки в августе 1981 г.

Прошло почти двадцать лет с тех пор, как я впервые провел различие между двумя типами развития науки – нормальным и революционным[3]. Большая часть успешных научных исследований укладывается в изменение первого типа, которое вполне соответствует привычному образу: нормальная наука производит материал, который научное исследование добавляет к постоянно возрастающему запасу научного знания. Эта кумулятивная концепция развития науки хорошо известна, и именно она породила громадное количество методологической литературы. И она сама, и ее методологическое сопровождение применимы ко многим важным видам научной деятельности.

Однако развитие науки выказывает также признаки не-кумулятивности, эпизоды некумулятивного развития позволяют по-новому осветить важнейшие стороны научного познания. Здесь я попытаюсь выделить несколько ключевых идей, для начала дав описание трех примеров революционного изменения, а затем кратко рассмотрев три характерные черты, присущие всем этим примерам. Конечно, революционные изменения обладают и другими общими чертами, однако эти три особенности обеспечивают достаточную основу для теоретического анализа, которым я сейчас занят и которым неожиданно заинтересовался, когда заканчивал эту статью.

Прежде чем обратиться к первому примеру, позвольте мне – для тех, кто не очень хорошо знаком с моей терминологией – пояснить, что это за пример.

Революционное изменение частично определяется его отличием от нормального изменения, а нормальное изменение, как уже упомянуто, добавляет нечто к тому, что уже известно. Например, обычным результатом этого нормального процесса являются научные законы: иллюстрацией может служить закон Бойля. Его первооткрыватели предварительно имели понятие о давлении газа и его объеме, а также обладали инструментами для определения величины давления и объема. Открытие того факта, что для конкретного газа при постоянной температуре произведение давления на объем является константой, просто добавило что-то к нашему знанию о том, как ведут себя эти уже ранее известные переменные[4]. Громадное большинство научных достижений относится к этому нормальному виду развития. Но я не буду без нужды умножать примеры.

Революционные изменения являются иными и гораздо более проблематичными. Они включают в себя открытия, которые нельзя совместить с ранее используемыми понятиями. Чтобы сделать или ассимилировать такое открытие, человек должен изменить сам способ мышления и описания естественных феноменов. Открытие Ньютоном (в подобных случаях лучше говорить об «изобретении») второго закона движения принадлежит к этому типу. Понятия силы и массы, входящие в этот закон, отличаются от похожих понятий, использовавшихся до введения этого закона, и сам закон играет существенную роль в определении этих понятий.

Вторым, более развернутым, хотя и более простым примером может служить переход от астрономии Птолемея к астрономии Коперника. До этого перехода Солнце и Луна были планетами, а Земля планетой не была. После этого перехода Земля стала планетой, подобно Марсу и Юпитеру, Солнце стало звездой, а Луна превратилась в небесное тело нового вида – спутник.

Изменения подобного рода нельзя свести к исправлению чьих-то ошибок, содержащихся в системе Птолемея. Подобно переходу к законам движения Ньютона, они включают в себя изменения не только в законах природы, но также и в критериях, согласно которым термины, входящие в эти законы, применяются к природе. Более того, сами эти критерии частично зависят от теории, вместе с которой они вводятся.

Когда такие изменения в референции сопровождают изменения законов или теорий, развитие науки не может быть вполне кумулятивным. Нельзя перейти от старого к новому, просто добавив новое к уже известному. И это новое нельзя описать в словаре старого, и наоборот.

Рассмотрим составное предложение: «В системе Птолемея планеты вращались вокруг Земли; в системе Коперника они вращаются вокруг Солнца». Строго говоря, это предложение является бессвязным. Первое вхождение термина «планета» является птолемеевским, второе – коперниканским, и оба термина применяются к природе по-разному. Это составное предложение является истинным только вследствие отсутствия единого прочтения термина «планета».

Столь схематичные примеры лишь намекают на то, что происходит во время революционного изменения. Поэтому я хочу обратиться к более полным примерам, начав с того, который лет тридцать назад привел меня к осознанию революционных изменений, а именно: с перехода от физики Аристотеля к физике Ньютона. Здесь может быть рассмотрена лишь его небольшая часть, касающаяся проблем движения и механики, да и то весьма схематично. Вдобавок я переворачиваю историческую последовательность и описываю не то, что требовалось натуральному философу-аристотелианцу, чтобы прийти к ньютоновским понятиям, а то, что нужно мне, ньютонианцу, для того, чтобы прийти к понятиям философии природы Аристотеля. Я буду путешествовать в глубь веков, руководствуясь текстами, аналогично тому, как ранние ученые двигались вперед, руководствуясь не текстами, а самой природой.

Некоторые физические сочинения Аристотеля я впервые прочитал летом 1947 г. Будучи аспирантом-физиком, я хотел представить анализ конкретного случая развития механики для учебного курса по науке для неспециалистов. Неудивительно, что к текстам Аристотеля я подходил с позиций ньютоновской механики, которая казалась мне совершенно ясной. Я надеялся найти ответ на вопрос: что из механики было известно Аристотелю и что осталось открыть таким людям, как Галилей и Ньютон.

При таком подходе я быстро обнаружил, что Аристотель почти ничего не знал из механики. Практически все было сделано последующими поколениями, по большей части в XVI и XVII столетиях. Это был вполне стандартный вывод, и в принципе он мог быть справедливым. Однако он вызывал у меня беспокойство, поскольку, по мере чтения, Аристотель казался мне не только невеждой в механике, но и вообще чрезвычайно плохим ученым. В частности, его сочинения о движении казались мне наполненными ужасными ошибками – как в логике, так и в наблюдении.

Это было неправдоподобно, ибо Аристотель, в конце концов, был величайшим систематизатором античной логики. Спустя два тысячелетия после его смерти труды его играли почти такую же роль в логике, как труды Евклида в геометрии. Аристотель часто проявлял себя чрезвычайно тонким наблюдателем природы. В частности, в биологии его описания служили моделями, сыгравшими центральную роль при формировании современной биологической традиции в XVI и XVII столетиях.

Почему выдающиеся способности изменяли ему, когда он обращался к изучению движения и механики? Опять-таки если способности ему здесь изменяли, то почему его сочинения по физике привлекали столь серьезное внимание на протяжении многих столетий после смерти? Эти вопросы неотступно преследовали меня. Я мог бы легко поверить в то, что Аристотель ошибался, но казалось невероятным, что, обращаясь к физике, он вообще утрачивал разум. «Может, ошибаюсь я, а не Аристотель, – спрашивал я себя. – Возможно, для него и его современников слова означали не совсем то, что они означают для меня?»

Охваченный сомнениями, я продолжал ломать голову над его текстами, постепенно мои подозрения обрели прочную основу. Я сидел за своим письменным столом, перечитывая «Физику» Аристотеля с цветным карандашом в руке. Погруженный в размышления, я оторвался от текста и рассеянно взглянул в окно. Внезапно обрывки мыслей в моем сознании сложились в совершенно новую картину. Я вдруг понял, что Аристотель был очень хорошим физиком, но особого рода, о котором я никогда не думал. Теперь я смог понять, что он говорил, почему говорил и на чем основывался его авторитет. Утверждения, которые ранее казались мне ошибочными, теперь предстали в качестве элементов влиятельной и в целом успешной традиции.

Такого рода опыт – когда отдельные части вдруг объединяются по-новому – является первой общей чертой революционного изменения, которую я отмечу после дальнейшего рассмотрения примеров. Хотя научные революции не охватывают многих элементов, основное изменение нельзя воспринять постепенно, шаг за шагом. Оно представляет собой относительно неожиданную и цельную трансформацию, в которой некоторая часть приобретенного опыта организуется иначе и обнаруживает факты, которых не замечали раньше.

Чтобы конкретизировать все эти рассуждения, позвольте рассказать о некоторых деталях моего открытия способа чтения «Физики» Аристотеля, чтобы понимать ее смысл.

Первая иллюстрация многим известна. Когда термин «движение» встречается в физике Аристотеля, он говорит об изменении вообще, а не об изменении положения физического тела. Изменение положения, этот единственный предмет механики Галилея и Ньютона, является одним из подвидов движения для Аристотеля. Другие виды включают в себя рост (превращение желудя в дуб), изменение интенсивности (нагревание железной болванки) и многие другие более общие качественные изменения (переход от болезни к выздоровлению). Таким образом, хотя Аристотель осознает, что различные подвиды не похожи во всех отношениях, базисные характеристики, необходимые для выделения и анализа движения, должны быть применимы к изменениям всех видов. Это не просто метафора, ибо все варианты изменения рассматриваются как подобные друг другу, как образующие отдельное естественное семейство[5].

Вторым, еще более важным, аспектом физики Аристотеля является центральная роль качеств в его концептуальной структуре. Я имею в виду не просто стремление объяснить качества и их изменения, как делают другие физики. Физика Аристотеля переворачивает онтологическую иерархию материи и качества – ту иерархию, которая стала обычной с середины XVII столетия.

В ньютоновской физике тело состоит из частиц материи, и его качества являются следствием их связи, движения и взаимодействия. С другой стороны, в физике Аристотеля материя есть нечто несущественное. Это некий нейтральный субстрат, присутствующий там, где находится тело, то есть в каком-то пространстве или месте. Конкретное тело, субстанция, существующая в каком-то месте нейтрального субстрата, отличается тем, что субстрат, подобно губке, впитывает в себя качества – теплоту, влажность, цвет и т. п. Изменения связаны с изменением качеств, а не материи: одна и та же материя теряет одни качества и приобретает другие. Здесь существуют даже некоторые неявные законы сохранения, которым должны подчиняться качества[6].

Физике Аристотеля присущи и другие общие особенности, причем имеющие большое значение. Однако я буду говорить только об этих двух, ссылаясь на другие лишь по необходимости. Теперь я хочу начать с того, что по мере осознания тех или иных особенностей позиции Аристотеля они начинают подкреплять друг друга и соединяются в некую целостность, обладающую общим и нераздельным смыслом. В моем опыте проникновения в тексты Аристотеля новые куски сразу укладывались в возникшую целостную картину.

Начнем с понятия качественной физики. Когда конкретный объект анализируют, выявляя качества, налагаемые на вездесущую нейтральную материю, то одним из этих качеств оказывается положение объекта или, в терминологии Аристотеля, его место. Таким образом, положение объекта, подобно влажности или сухости, является его качеством, которое изменяется, когда объект движется или его двигают.

Следовательно, для Аристотеля локальное движение (движение tout court в смысле Ньютона) является изменением качества или изменением состояния, а не состоянием самим по себе, как у Ньютона. Однако именно рассмотрение движения как изменения качества позволяет объединить его с остальными видами изменения – например, с превращением желудя в дуб или болезни в здоровье. Это объединение является той стороной физики Аристотеля, с которой я начал, но я мог бы начать и с чего-то другого. Концепция движения как изменения и концепция качественной физики обнаруживают глубокую взаимную зависимость и кажутся почти эквивалентными. Это первый пример слияния разных частей в некое единство.

Как только это становится ясно, и другие стороны аристотелевской физики, которые сами по себе кажутся нелепыми, начинают приобретать смысл. По большей части качественные изменения, в частности в области органической жизни, являются асимметричными, по крайней мере когда предоставлены самим себе. Желудь естественным образом развивается в дуб, но не наоборот. Больной человек часто выздоравливает сам по себе, однако нужен некий внешний агент, или считается, что нужен, для того чтобы он заболел. Единый массив качеств, конечный пункт изменения, представляет собой естественное состояние тела, и само по себе тело остается в этом состоянии.

Такая же асимметрия должна быть присуща локальному движению, то есть изменению положения, и так оно и есть. Качество, которое стремится реализовать камень или другое тяжелое тело, есть его положение в центре универсума; естественное положение огня находится на периферии. Это объясняет, почему камень, если ему не мешают, падает к центру, а огонь стремится к небесам. Они реализуют свои естественные свойства точно так же, как реализует их желудь в процессе роста. Таким образом, становится понятной другая, ранее казавшаяся странной, часть учения Аристотеля.

Можно продолжать в том же духе, постепенно включая отдельные элементы аристотелевской физики в целостную картину. Однако я завершу рассмотрение примера иллюстрацией, а именно учением Аристотеля о пустоте, или вакууме. Оно с особой ясностью показывает, каким образом утверждения, которые сами по себе кажутся произвольными, взаимно подкрепляют друг друга.

Аристотель утверждает, что пустота невозможна. С его точки зрения, понятие пустоты внутренне противоречиво. Теперь должно быть ясно, почему это так. Если положение есть качество, а качества не могут существовать отдельно от материи, то везде, где есть положение, где может находиться тело, должна существовать и материя. Но это значит, что везде в пространстве должна существовать материя: пустота, пространство без материи, становится чем-то вроде круглого квадрата[7].

Это хороший аргумент, однако его предпосылка кажется произвольной. Аристотелю не обязательно истолковывать положение как некое качество. Возможно, это так, но мы уже заметили выше, что эта концепция лежит в основе истолкования им движения как изменения состояния, от нее зависят и другие аспекты его физики. Если бы пустота существовала, то универсум, или космос, Аристотеля не мог быть конечным. Поскольку материя и пространство коэкстенсивны, пространство заканчивается там, где заканчивается материя, и за пределами самой далекой сферы вообще ничего нет – ни пространства, ни материи.

Это учение тоже не кажется необходимым. Однако расширение сферы звезд в бесконечность поставило бы проблемы перед астрономией, поскольку эта сфера вместе со звездами вращалась вокруг Земли.

Другое, еще более важное затруднение возникает еще раньше. В бесконечном универсуме нет центра – любая точка может считаться таким центром, поэтому нет естественного положения, в котором камни и другие тяжелые тела могли бы реализовать свое естественное качество. Иначе говоря, в пустоте тело не могло бы знать, где его естественное место. Именно благодаря контакту со всеми положениями в универсуме через посредство всепроникающей материи тело способно найти путь к тому месту, в котором полностью реализуются его естественные качества. Только наличие материи придает пространству определенную структуру[8].

Таким образом, критика аристотелевского учения о пустоте угрожает и его теории естественного движения, и древней геоцентрической астрономии. Нет способа «исправить» взгляды Аристотеля на пустоту, не перестраивая значительной части всей его физики.

Хотя эти замечания являются упрощенными и неполными, все-таки они в достаточной мере иллюстрируют способ, с помощью которого аристотелева физика структурирует и описывает мир феноменов. Еще важнее, что они указывают, каким образом отдельные части этого описания, соединяясь вместе, образуют интегральную целостность, которая была разрушена и реформирована на пути к построению ньютоновой механики.

Теперь я сразу перейду ко второму примеру и обращусь к началу XIX столетия. 1800 год, помимо прочего, замечателен тем, что в этом году Вольта открыл электрическую батарею. Об этом открытии он сообщил в письме к сэру Джозефу Бэнксу, президенту Королевского общества[9]. Письмо предназначалось для публикации и было снабжено иллюстрацией, воспроизведенной на рис. 1.

Для современного читателя в этом рисунке есть нечто странное, хотя эту странность редко замечают даже историки. Если мы взглянем на так называемые «столбики» (из монет) в нижней части рисунка, то, двигаясь справа и снизу вверх, сначала увидим пластинку из цинка, Z, затем – пластинку из серебра, А, потом – кусочек мокрой промокательной бумаги, затем – вторую пластинку из цинка и так далее. Цикл, состоящий из цинка, серебра и промокательной бумаги, повторяется целое число раз, в оригинале – восемь. Теперь допустим, вам дали взглянуть на эту диаграмму, а затем попросили воспроизвести ее по памяти. Скорее всего тот, кто хотя бы немного знаком с физикой, поместит сначала цинк (или серебро), затем – промокательную бумагу и лишь потом – серебро (или цинк). В электрической батарее, как все мы хорошо знаем, жидкость находится между двумя разными металлами.

Приняв к сведению эту головоломку, начинаешь понимать, что для Вольты и его последователей отдельный элемент состоит из двух металлических пластинок, соединенных вместе. Источником силы является контакт металлов, в котором Вольта обнаружил источник электрического напряжения. Тогда роль жидкости состоит просто в том, чтобы связывать один элемент с другим, не создавая потенциала, способного нейтрализовать первоначальный эффект. Изучая текст Вольты дальше, приходишь к выводу, что свое новое открытие он относил к электростатике. Биметаллическое соединение оказывается конденсатором, или лейденской банкой, которая заряжает саму себя. Тогда столбик из отдельных элементов представляется как ансамбль или «батарея» самозаряжающихся лейденских банок. Вот так термин «батарея» начинает применяться к электричеству. Подтверждением может служить верхняя часть рисунка Вольты, иллюстрирующая структуру, которую он называет «связкой чашек».

Рис.0 После «Структуры научных революций»

Рис. 1

Хотя этот рисунок очень похож на диаграммы в современных элементарных учебниках, здесь опять-таки имеется странность. Почему чашки на двух концах диаграммы содержат только один кусок металла? Почему Вольта включает две половинки элемента? Ответ прежний. Для Вольты чашки являются не элементами, а простыми емкостями для жидкости, связывающей элементы. Сами элементы являются биметаллическими подковообразными прутиками. Незанятые места в крайних чашках мы должны представлять себе как связанные дополнительным прутом. В диаграмме Вольты нет половинок элементов.

Как и в предшествующем примере, такой взгляд на электрическую батарею приводит к разнообразным следствиям. Как показано на рис. 2, например, переход от представлений Вольты к современным сохраняет направление потока. Современное изображение элемента (рис. 2, в) можно получить из диаграммы Вольты (рис. 2, а) посредством перемещения левой пластины по кругу (рис. 2, б). При этом то, что было внутренним потоком, становится внешним, и наоборот. В диаграмме Вольты внешний поток идет от черной пластины к белой, поэтому черная пластина является положительной. В современном изображении и направление потока, и полярность противоположны.

Концептуально гораздо более важным является изменение понимания источника тока. Для Вольты существенным элементом ячейки и источником тока было соприкосновение металлических пластин. Когда ячейка была вывернута и жидкость стала соприкасаться с двумя металлическими пластинами, источником тока стал химический эффект этих взаимодействий.

Когда обе эти точки зрения были сопоставлены, то первая получила известность как контактная теория, а вторая – как химическая теория электрической батареи.

Рис.1 После «Структуры научных революций»

Рис. 2

Это лишь наиболее очевидные следствия электростатического понимания электрической батареи, но имеются и другие. Например, концепция Вольты не замечает концептуальной роли внешней цепи. То, что представляется нам внешней цепью, для Вольты является путем разряда, подобного разряду, который разряжает лейденскую банку. Поэтому ранние рисунки батареи не показывают внешней цепи, если нет стороннего вмешательства, например, электролиза или нагревания проволоки. Не раньше 1840-х годов в книгах по электричеству начинают появляться современные изображения электрических ячеек. На них уже можно видеть либо внешнюю цепь, либо указания на ее присутствие[10] (см. рис. 3 и 4).

Рис.2 После «Структуры научных революций»

Рис. 3

Рис.3 После «Структуры научных революций»

Рис. 4

Наконец, электростатическое истолкование электрической батареи ведет к отличному от современного пониманию электрического сопротивления. В тот период существовала электростатическая концепция сопротивления. Для изоляционного материала данного сечения сопротивление измеряли посредством толщины, которая позволяла ему не разрушаться и оставаться изолятором при данном напряжении. Для проводника определенного сечения сопротивление измеряли посредством той его длины, при которой он не расплавлялся, когда через него пропускали ток.

Сопротивление можно измерять таким способом, но результаты измерения несовместимы с законом Ома. Для получения этих результатов нужно представить электрическую батарею в виде гидродинамической модели. Здесь сопротивление становится похоже на трение протекающей воды о стенки трубы. Включение сюда закона Ома потребовало некумулятивного изменения подобного рода, поэтому для многих людей его принятие оказалось очень трудным. Это дает нам стандартный пример важного открытия, которое первоначально отвергалось или игнорировалось.

На этом я заканчиваю рассмотрение второго примера и перехожу к третьему, более современному и несколько более сложному.

До сих пор идут споры об источниках квантовой теории[11]. Главный предмет обсуждения – работа Макса Планка по проблеме черного тела – работа, ход которой можно представить следующим образом. Сначала Планк решил проблему черного тела в 1900 г., используя классический метод, разработанный австрийским физиком Людвигом Больцманом. Через шесть лет в его выводе была обнаружена небольшая, но принципиальная ошибка, затрагивающая один из важнейших элементов этого вывода. Планк исправил решение, но при этом был вынужден радикально отойти от традиции. В конечном счете этот разрыв с традицией привел к перестройке значительной части физики.

Начнем с Больцмана, который представлял себе газ как совокупность множества крохотных молекул, быстро движущихся в замкнутом сосуде и сталкивающихся друг с другом и со стенками сосуда. Из работ других физиков Больцман знал, какова средняя скорость молекул (точнее, каков в среднем квадрат их скорости). Но многие молекулы двигались, конечно, с меньшей, чем средняя, скоростью, а какие-то из них двигались быстрее. Больцман хотел установить, какая часть молекул двигалась с ½ от средней скорости, какая часть – с 4/3 средней скорости и так далее. Ни сам вопрос, ни ответ, который он нашел, не были открытием. Однако Больцман пришел к ответу новым путем, исходя из теории вероятностей, и этот путь имел фундаментальное значение для Планка.

Для нас здесь важен лишь один аспект метода Больцмана. Он рассматривал общую кинетическую энергию молекул Е. Чтобы использовать теорию вероятностей, он мысленно разделял эту энергию на маленькие кусочки, или элементы, величины г, как показано на рис. 5. Затем воображал случайное распределение молекул среди этих кусочков, вытаскивая пронумерованные бумажки из урны, чтобы установить место каждой молекулы, а потом исключая все распределения с общей энергией, отличной от Е. Например, если первая молекула попадала в последний отрезок (энергия Е), то единственно приемлемым распределением оказывалось бы такое, при котором все другие молекулы попадали в первый отрезок (энергия о).

Ясно, что такое распределение молекул в высшей степени невероятно. Более правдоподобной выглядит ситуация, когда большая часть молекул обладает какой-то энергией, и с помощью теории вероятностей можно обнаружить наиболее вероятное распределение энергии среди молекул. Больцман показал, как это сделать, и его результат совпадал с тем, что было получено ранее им самим и другими физиками.

Рис.4 После «Структуры научных революций»

Рис. 5

Этот способ решения проблемы был изобретен в 1877 г., а через двадцать три года, в конце 1900 г., Макс Планк применил его для решения иной проблемы – проблемы излучения черного тела. С физической точки зрения проблема состояла в том, чтобы объяснить, каким образом изменяется цвет нагретого тела в зависимости от его температуры.

Представьте, например, излучение железной болванки, которая по мере повышения температуры сначала начинает исходить жаром (инфракрасное излучение), потом краснеет и в конце концов становится ослепительно белой. Для анализа ситуации Планк вообразил контейнер, наполненный разного рода излучениями, то есть светом, теплом, радиоволнами и т. п. Вдобавок предположил, что в контейнере имеется некоторое количество «резонаторов» (представляя их в виде тонких электрических камертонов, каждый из которых настроен на излучение одной определенной частоты). Эти резонаторы поглощают энергию из общего потока излучения, и Планк ставит вопрос: как энергия, отбираемая каждым резонатором, зависит от ее частоты? Каково частотное распределение энергии среди резонаторов?

В таком понимании проблема Планка становится очень близкой к проблеме Больцмана, Планк применяет для ее решения вероятностную технику Больцмана. Грубо говоря, использует теорию вероятностей для нахождения пропорций, в которых резонаторы попадают в каждую отдельную ячейку, – точно так, как Больцман находил распределение молекул.

Его ответ соответствовал экспериментальным результатам лучше, чем любой другой, однако между его проблемой и проблемой Больцмана обнаружилось неожиданное различие. Для Больцмана ячейка величины s могла иметь много разных значений, что не влияло на результат. Несмотря на то что допустимые значения были взаимосвязаны и не являлись слишком большими или слишком маленькими, могло существовать бесконечно много удовлетворительных значений.

Проблема Планка показала иное: величину ячейки s детерминировали другие стороны физики. Она могла иметь лишь единственное значение, задаваемое знаменитой формулой ε = hv, в которой v является частотным резонатором, a h представляет собой универсальную константу, впоследствии названную именем Планка.

Планк, конечно, недоумевал относительно причины ограничения величины ячейки, но твердо следовал избранному пути. За исключением этой небольшой трудности, он все-таки решил свою проблему, а его подход остался близок подходу Больцмана. В частности, что наиболее важно, в обоих решениях разделение общей энергии Е по ячейкам величины 8 было мысленным, осуществляемым статистически. Молекулы и резонаторы могли распределяться по всей линии и подчинялись стандартным законам классической физики.

Описанная выше работа была проделана в конце 1900 г. Шесть лет спустя, в середине 1906 г., два других физика показали, что результат Планка не мог быть получен тем способом, который он использовал. Требовалось небольшое, но абсолютно решающее изменение рассуждений. Резонаторы не могли располагаться по всей непрерывной линии энергии, они могли располагаться только в особых ячейках. Иначе говоря, резонатор мог обладать энергией о, ε, 2ε, и т. д., но не (⅓)ε, (⅘)ε и т. д. Энергия резонатора также изменяется не непрерывно, а скачками на величину ε или кратную ε.

После этого рассуждение Планка стало совершенно иным и в то же время почти не изменилось. Математически оно не изменилось, поэтому читатели видели в его статье 1900 г. изложение стандартного нового аргумента. Однако физически сущности, к которым относился математический вывод, стали совершенно иными. В частности, элемент ε, возникший из мысленного разделения общей энергии, превратился в физический атом энергии, который может быть присущ каждому резонатору только в количестве 0, 1, 2, 3 и т. д. На рис. 6 это изменение представлено так, что оно напоминает вывернутую наизнанку электрическую батарею из моего последнего примера. Опять-таки эта трансформация является настолько тонкой, что ее трудно заметить. И вновь изменение носит принципиальный характер. Уже сам резонатор из знакомой вещи, подчиняющейся обычным физическим законам, превращается в нечто странное, несовместимое с традиционными методами физики. Как известно большинству из вас, подобные изменения продолжали происходить на протяжении двадцати лет – по мере того как обнаруживались новые сходные неклассические феномены.

Рис.5 После «Структуры научных революций»

Рис. 6

Я не буду говорить об этих более поздних изменениях, а завершу пример указанием на изменения иного рода, сопровождающие первые. При обсуждении более ранних примеров я упоминал, что за революциями всегда следовало изменение способа, которым термины типа «движение» или «элемент» применялись к природе. В данном примере изменение реально происходило с самими словами, что по-новому освещало особенности ситуации в физике, которые революция выдвинула на передний план.

Когда Планк к 1909 г. пришел к убеждению, что прерывность реальна, он обратился к словарю, который до того был стандартным. Ранее он говорил о ячейке размером s как об энергии «элемента». Теперь, с 1909 г., начал говорить об энергии «кванта», ибо в словаре немецких физиков «квант» истолковывался как отдельный элемент, как сущность, подобная атому и пребывающая сама по себе. Хотя величина s была лишь мерой мысленного разделения, она являлась не квантом, а элементом.

В 1909 г. Планк отбрасывает также и акустическую аналогию. Сущности, которые он сначала ввел в качестве «резонаторов», теперь становятся «осцилляторами». Последний термин нейтрален и относится к любой сущности, которая вибрирует. Напротив, «резонатор» говорит об акустической сущности или о таком вибраторе, колебания которого усиливаются или затухают под влиянием воздействующего стимула. Для того, кто считает изменение энергии прерывным, слово «резонатор» не является подходящим термином, Планк отказывается от него в 1909 г.

Я хочу завершить обсуждение рассмотрением вопроса о том, какие характерные особенности революционного изменения проявились в этих примерах. Мои ответы разделяются на три группы, и я кратко остановлюсь на каждой из них. Они, конечно, требуют более тщательного анализа, к которому я еще не вполне готов.

Первое множество общих характерных особенностей было упомянуто в начале статьи. Революционные изменения являются некоторым образом всеобъемлющими (holistic). Они не могут быть постепенными и тем отличаются от нормальных, или кумулятивных, изменений – таких, например, как открытие закона Бойля.

При нормальном изменении что-то исправляют или добавляют какое-то обобщение, а остальное остается тем же самым. При революционном изменении приходится либо мириться с противоречиями, либо сразу исправлять значительное число взаимосвязанных обобщений. Если бы эти изменения вводились по одному, то не было бы промежуточных остановок. Только первоначальное и финальное множества обобщений дают непротиворечивое истолкование природы.

Даже в третьем примере, близком к кумулятивизму, нельзя было просто изменить описание элемента энергии s. Нужно было также изменить понятие резонатора, ибо резонаторы (в любом нормальном смысле этого слова) не могли себя вести так, как требовалось, – для этого необходимо было изменить одновременно законы механики и электромагнитной теории.

Во втором примере нельзя было просто изменить представление о порядке элементов в электрической батарее. Нужно было изменить также представления о направлении течения тока, о роли внешнего проводника, о понятии электрического сопротивления и т. д. В случае с аристотелевой физикой нельзя было просто открыть, что вакуум возможен или что движение есть состояние, а не изменение состояния. Должна была одновременно измениться целостная картина различных сторон природы.

Вторая характерная особенность тесно связана с первой. Это то, что раньше я называл изменением значения, а здесь более точно описал как изменение способа отнесения слов и фраз к природе, как изменение способа детерминации их референтов. Однако даже это описание является слишком общим. Как показали недавние исследования референции, все, что известно о референтах некоторого термина, может быть использовано для отнесения этого термина к природе. Недавно открытые свойства электричества, излучения или воздействия силы на движение могут быть использованы (обычно другими людьми) для установления наличия электричества, излучения или силы и, таким образом, для выделения референтов соответствующих терминов. Такие открытия не являются необходимыми и обычно не носят революционного характера. Нормальная наука также изменяет способы применения терминов к природе. Следовательно, революции характеризуются не простым изменением в способах установления референтов, а изменением специфического рода.

Как лучше охарактеризовать эти специфические изменения – вот проблема, для которой у меня нет окончательного решения. Отличительная особенность революционного изменения языка заключается в том, что при этом изменяются не только критерии применения терминов к природе, но и множество объектов или ситуаций, к которым относятся эти термины. То, что было парадигмальными примерами движения для Аристотеля – превращение желудя в дуб или болезни в здоровье, – для Ньютона вообще не было движением.

В революционном переходе естественное семейство перестает быть естественным. Его члены перераспределяются среди ранее существовавших множеств, и только одно из них продолжает сохранять прежнее название. Опять-таки то, что было единицей электрического элемента в батарее Вольты, через сорок лет после открытия уже больше не было референтом ни одного термина. Хотя последователи Вольты все еще имели дело с металлами, жидкостями и потоком зарядов, единицы их анализа были совершенно иными и иначе связанными.

Таким образом, для революции характерно изменение таксономических категорий, являющихся необходимой предпосылкой научных описаний и обобщений. Кроме того, это изменение корректирует не только критерии категоризации, но и способ распределения объектов и ситуаций среди ранее существовавших категорий. Поскольку такое перераспределение всегда затрагивает не одну, а несколько категорий и поскольку эти категории участвуют в определении друг друга, то изменения такого рода всегда носят всеобъемлющий характер. Этот холизм коренится в природе самого языка, ибо критерии категоризации фактически являются критериями применения имен этих категорий к миру. Язык, как монета, имеет две стороны: одной стороной он обращен к миру, а другой – к отображению мира в референциальной структуре языка.

Посмотрим теперь на последнюю, третью черту, общую для моих трех примеров. Мне очень трудно было ее осознать, но теперь она кажется наиболее очевидной и, вероятно, наиболее важной. Поэтому она больше других заслуживает дальнейшего исследования. Все мои примеры содержали главное изменение – модели, метафоры или аналогии, то есть изменение в понимании того, что сходно, а что различно. Иногда, как в примере с Аристотелем, сходство включено в сам предмет рассмотрения. Для последователей Аристотеля движение было частным случаем изменения: падение камня было похоже на рост желудя или на переход от болезни к здоровью. Именно такое понимание сходства объединяет все эти явления в естественное семейство и помещает их в одну и ту же таксономическую категорию. От этого понимания отказались в процессе разработки ньютоновской физики.

Обычно сходство бывает чисто внешним. Так, резонаторы Планка были похожи на молекулы Больцмана, или элементы батареи Вольта – похожи на Лейденские банки. В этих случаях старые образцы сходства также были отброшены и заменены в процессе революционного изменения.

Все эти случаи демонстрируют особенности, известные тем, кто исследует метафоры. В каждом из них два объекта или две ситуации объединяются и считаются одним и тем же или сходными. (При более широком взгляде следовало бы рассмотреть также примеры несходства, поскольку часто они важны для установления таксономии.) Кроме того, каков бы ни был их источник (это отдельный вопрос, которого здесь я касаться не буду), главной функцией всех этих объединений и сопоставлений является передача и укрепление некоторой таксономии.

Сопоставляемые объекты предъявляются непросвещенной аудитории тем, кто уже осознал их сходство и стремится, чтобы и аудитория научилась его видеть. Если предъявление прошло успешно, появляются новые энтузиасты с перечнем особенностей, присущих требуемому отношению сходства. Они показывают, что сопоставляемые объекты являются примерами одной и той же вещи и отличаются от объектов или ситуаций, с которыми их могли бы спутать. Так обучение аристотелика ассоциирует полет стрелы с падением камня, а то и другое – с ростом желудя и выздоровлением. После этого все становится изменением состояния; конечные пункты и время перехода оказываются важнейшими свойствами этих процессов. С этой точки зрения движение не может быть относительным и должно быть принципиально отлично от покоя, представляющего собой состояние. Точно так же, с этой точки зрения, бесконечное движение оказывается внутренне противоречивым вследствие отсутствия конечного пункта.

Подобные метафорам объединения и сопоставления, которые изменяются в периоды научных революций, являются, таким образом, главными в процессах усвоения научного и иных языков. Лишь после того как процесс усвоения нового языка достиг определенного уровня, может начаться научная практика. Научная практика всегда включает в себя производство и объяснение обобщений, относящихся к природе, а такая деятельность предполагает наличие достаточно развитого языка, усвоение которого означает усвоение некоторого знания о природе. Когда демонстрация примеров становится частью процесса усвоения таких терминов, как «движение», «электрический элемент» или «квант энергии», при этом приобретается и знание языка, и знание мира. С одной стороны, обучаемый узнает, что означают эти термины, какие особенности важны для применения их к природе, какие вещи нельзя к ним относить, не впадая в противоречие, и т. д. С другой стороны, обучаемый узнает, какого рода вещи населяют мир, каковы их важнейшие свойства, как они могут или не могут вести себя. В большинстве языков усвоение этих двух видов знания – знания слов и знания природы – представляет собой единый процесс. Это вообще не два разных вида знания, а две стороны единого целого, представляющего язык.

Проявление двойственного характера научного языка обеспечивает данной статье подходящий конец. Если я прав, то важнейшей характеристикой научных революций является изменение знания о природе, включенного в язык, и это предшествует описаниям и обобщениям – как научным, так и повседневным. Чтобы пустоту или бесконечное прямолинейное движение сделать частью науки, требуются наблюдения, отчеты о которых можно сформулировать только после изменения языка, посредством которого описывается природа. Пока эти изменения происходят, язык сопротивляется изобретению и введению ожидаемых новых теорий. Именно это сопротивление языка, как мне кажется, объясняет переход Планка от терминов «элемент» и «резонатор» к терминам «квант» и «осциллятор». Искажение или ломка ранее принятого научного языка является важнейшим показателем научной революции.

Глава 2

Соизмеримость. Сравнимость. Коммуникативность

«Соизмеримость. Сравнимость. Коммуникативность»[12] была главной статьей симпозиума, организованного Ассоциацией философии науки в 1982 г. Комментаторами выступили Филипп Китчер (Philip Kitcher) и Мэри Хессе (Mary Hesse).

Ответ Куна на их комментарии помещен здесь как постскриптум к главе. Труды симпозиума опубликованы в PSA 1982, volume 2 (East Lansing, MI: The Philosophy of Science Association, 1983).

Прошло двадцать лет с тех пор, как Пол Фейерабенд и я впервые употребили в печати термин, позаимствованный нами из математики, для описания отношений между успешными научными теориями. Это термин «несоизмеримость». Каждый из нас пришел к нему, столкнувшись с проблемами интерпретации научных текстов[13]. Я использовал термин шире, чем он; его утверждения относительно предмета были радикальнее моих, но совпадение наших позиций тогда было значительным[14]. Каждый из нас прежде всего стремился показать, что значения научных терминов и понятий (к примеру, «сила», «масса» или «элемент» и «соединение») часто менялись вместе с теорией, из которой они были введены[15]. И каждый из нас утверждал, что, когда такие изменения происходили, невозможно было определить все термины одной теории, используя словарь другой. Последнее утверждение вылилось в отдельный разговор о несоизмеримости научных теорий.

Все это было в 1962 г. С тех пор проблемы изменения значений обсуждались очень бурно, но, в сущности, никто в полной мере не обращался к тем трудностям, которые привели нас с Фейерабендом к понятию несоизмеримости. Вне сомнения, эта невнимательность отчасти объясняется той ролью, которую играли интуиция и метафора в наших исходных представлениях. Я, к примеру, допускал много двусмысленностей в употреблении, как в визуальном, так и в концептуальном значении, глагола «видеть». Я неоднократно уподоблял теоретические изменения переключению гештальта. Но по каким бы то ни было причинам понятие несоизмеримости резко и часто отвергалось, последний раз в книге, опубликованной в конце прошлого года Хилари Патнэмом[16]. Патнэм убедительно излагает суть двух направлений критики, широко распространенных в предшествующей философской литературе. Краткое напоминание об этой критике подготовит почву для последующих обширных комментариев.

Большая часть дискуссий о несоизмеримости была обусловлена дословно корректным, но часто неправильно интерпретируемым допущением, что если две теории несоизмеримы, они должны быть сформулированы на взаимно-непереводимых языках. Если это так, утверждается первой линией критики, если нет способа сформулировать обе теории на одном языке, тогда они не могут сравниваться, и не может быть никаких очевидных аргументов, чтобы сделать выбор между ними. Разговор об отличиях и сравнении предполагает некую общую почву, которую, по всей видимости, отрицают защитники несоизмеримости, часто говорящие о сравнениях. Здесь их заявления определенно непоследовательны[17].

Вторая линия критики заходит так же далеко. Такие люди, как Кун, утверждают ее представители, убеждают нас, что невозможно перевести старые теории на современный язык. Но потом они именно это и делают, реконструируя теории Аристотеля, Ньютона, Лавуазье или Максвелла, не выходя за пределы языка, на котором мы разговариваем каждый день. Что они при этих условиях могут подразумевать, говоря о несоизмеримости[18]?

Проблемы, вынесенные здесь на обсуждение, поднимаются главным образом вторым направлением критики, но эти два направления взаимосвязаны, и я должен буду говорить и о первом. С него и начну, прежде всего попытавшись устранить распространенное неверное понимание по крайней мере моей собственной точки зрения. Даже при устранении этого непонимания разрушительный остаток первого направления критики все же сохранится. К нему я вернусь только в конце статьи.

Частичная несоизмеримость

Коротко напомню о происхождении термина «несоизмеримость». Гипотенуза равнобедренного прямоугольного треугольника несоизмерима с его стороной или длина окружности – с ее радиусом в том смысле, что нет единицы длины, содержащейся без остатка целое число раз в каждом члене пары. Таким образом, здесь не существует общего измерения. Но отсутствие общего измерения оставляет возможность сравнения. Напротив, несоизмеримые величины можно сравнивать с любой необходимой степенью приближения. Доказательство того, что это возможно и как это возможно, было одним из блестящих достижений греческой математики. Но это достижение стало возможным только потому прежде всего, что большая часть геометрических процедур без изменений применялась к обоим сравниваемым объектам.

В применении к понятийному словарю, используемому в научной теории, термин «несоизмеримость» функционирует метафорически. Фраза «отсутствие общей меры» превращается в «отсутствие общего языка». Утверждение, что две теории несоизмеримы, означает тогда, что нет языка, нейтрального или иного, на который обе теории, понимаемые как набор предложений, могут быть переведены без остатка и потерь. Как в метафорическом, так и в буквальном смысле несоизмеримость не влечет несравнимости. Большая часть общих для двух теорий терминов функционирует в обеих одинаково. Их значение, каким бы оно ни было, сохраняется; их перевод является простой заменой одних слов другими. Только для небольшой группы (как правило, взаимоопределяемых) терминов и для предложений, их содержащих, возникает проблема перевода. Утверждение, что две теории несоизмеримы, гораздо скромнее, чем предполагали многие его критики.

Я буду называть этот умеренный вариант несоизмеримости «частичной несоизмеримостью». В той мере, в какой несоизмеримость утверждалась относительно языка и относительно изменения значения, ее частичная форма была моей исходной точкой зрения. Если последовательно придерживаться этого, первое направление критики проваливается. Термины, сохраняющие свое значение при переходе от одной теории к другой, создают основание, достаточное для обсуждения различий и сравнений, связанных с выбором теории[19]. Они создают даже основание для анализа значений несоизмеримых терминов.

Однако не очень ясно, каким образом несоизмеримость можно ограничить отдельной областью. При современном состоянии теории значения различие между терминами, которые изменяют значение, и теми, которые его сохраняют, в лучшем случае сложно объяснить или применить. Значение – это продукт истории, и со временем оно неизбежно меняется вместе с требованиями к терминам, которые им обладают. Просто невероятно, что некоторые термины должны изменить свое значение при переходе к новой теории, не затрагивая другие термины, участвующие в переходе. Не давая никакого решения, фраза «инвариантность значения» может дать только новое пристанище проблемам, встающим в связи с понятием несоизмеримости. Это затруднение не продукт неправильного понимания, оно вполне реально. Я вернусь к нему в конце статьи, когда станет ясно, что «значение» – не самая лучшая рубрика для обсуждения несоизмеримости. Но более подходящей альтернативы под рукой пока нет. В ее поисках я сейчас обращаюсь ко второму главному направлению критики, постоянно направляемой на несоизмеримость.

Перевод versus интерпретация

Если бы какой-либо термин старой теории не поддавался переводу на язык ее преемницы, как могли бы историки и другие аналитики достигнуть успеха в реконструкции или интерпретации этой старой теории, включая употребление и функцию этих самых терминов? Историки заявляют о своей способности давать успешные интерпретации. Точно так же считают занимающиеся очень близкими исследованиями антропологи. Здесь я просто приму допущение, что их утверждения оправданны. Во всяком случае, верны они или нет, а я полагаю, что верны, эти допущения являются фундаментальными для аргументов, выдвинутых против несоизмеримости такими критиками, как Дэвидсон, Китчер и Патнэм[20]. Все трое пытаются обрисовать техники интерпретации, все считают их результатом перевод или схему перевода, и все приходят к выводу, что их успешность несовместима даже с частичной несоизмеримостью. Сейчас я покажу, в чем суть данного аргумента, и выскажусь по центральному вопросу этой главы.

Аргумент или краткий набросок аргумента, который я только что представил, в значительной степени определяется отождествлением интерпретации с переводом. Это отождествление можно проследить по крайней мере до работы Куайна «Слово и объект»[21]. Я убежден, что такое отождествление неверно и что эта ошибка серьезна. Мое утверждение состоит в том, что интерпретация, о которой я еще буду говорить, и перевод – не одно и то же, по крайней мере если принять понимание перевода представителями значительной части современной философии.

Запутаться здесь очень легко, так как реальный перевод часто, а возможно, и всегда предполагает интерпретационную составляющую. Но в этом случае реальный перевод должен рассматриваться как процесс, включающий в себя два отдельных процесса. Современная аналитическая философия сконцентрировалась только на одном из них и объединила его со вторым. Чтобы избежать путаницы, я буду придерживаться современного употребления и применять понятие «перевод» только к первому из этих процессов, а понятие «интерпретация» ко второму. Но поскольку мы признали существование двух процессов, в моих аргументах ничего не будет зависеть от того, что термин «перевод» остается за первым.

Итак, для настоящих целей, перевод – нечто, что осуществляется человеком, знающим два языка. Столкнувшись с текстом, письменным или устным, на одном из этих языков, переводчик систематически заменяет слова или группы слов текста на одном языке на слова или группы слов на другом таким образом, чтобы получить эквивалентный текст на другом языке. Что означает для текста быть «эквивалентным» может на некоторое время остаться неопределенным. Как сходство значений, так и сходство референции, очевидно, желательны, но пока я не буду этого требовать. Давайте просто будем считать, что перевод сообщает более или менее одинаковую информацию, передает более или менее одинаковые идеи или описывает более или менее одинаковые ситуации, что и текст, переводом которого он является.

Две особенности таким образом понимаемого перевода требуют особого внимания. Во-первых, язык, на который выполняется перевод, существовал до того, как начался перевод. Факт перевода, таким образом, не изменил значение слов и фраз. Он мог, конечно, умножить число известных референтов данного термина, но это не изменило того, как эти референты, как старые, так и новые, определяются. Вторая особенность тесно связана с первой. Перевод состоит исключительно из слов и фраз, которые замещают (не обязательно взаимно однозначно) оригинальные слова и фразы. Толкования и предисловие переводчика не являются частью перевода; совершенный перевод не должен в них нуждаться. Если, несмотря на это, они потребовались, мы должны спросить: почему? Несомненно, эти особенности перевода кажутся идеализацией. Они действительно таковы. Но эта идеализация принадлежит не мне. Помимо других источников, обе они непосредственно вытекают из природы и функции руководства по переводу Куайна.

Вернемся теперь к интерпретации. Это предприятие, в числе прочих, практикуется историками и антропологами. В отличие от переводчика интерпретатор исходно может распоряжаться только одним языком. Вначале текст, над которым он или она работает, состоит целиком или частично из непонятных шумов или надписей. «Радикальный переводчик» Куайна на самом деле интерпретатор, а «гавагай» представляет собой непонятный материал, с которого он начинает. Наблюдая за поведением и средой, окружающей создание текста, и предполагая в течение всего времени, что во внешних проявлениях языкового поведения есть здравый смысл, исследователь ищет этот смысл, пытается выдвигать гипотезы вроде «гавагай» означает «вот кролик», что делает произнесение или надпись понятной. Если интерпретатор достигает успеха, в первую очередь он выучивает новый язык, где «гавагай» является термином, или более ранний вариант языка самого интепретатора, в котором все еще находящиеся в употреблении термины, например, «сила» и «масса» или «элемент» и «соединение», функционировали по-другому. Можно ли перевести этот язык на тот, с которого начинал интерпретатор, остается открытым вопросом. Овладение новым языком и перевод с него на какой-либо иной язык – не одно и то же. Успех в первом не влечет за собой успех во втором.

Это говорит о систематической путанице в примерах Куайна, ввиду того что он объединяет интерпретацию и перевод. Чтобы интерпретировать произнесение слова «гавагай», воображаемый антрополог Куайна не обязан принадлежать к речевому сообществу, знакомому с кроликами и имеющему слово, которое указывает на них. Вместо того чтобы находить соответствующий «гавагаю» термин, интерпретатор/антрополог может овладеть местным термином примерно так, как на более раннем этапе овладел терминами своего собственного языка[22]. Это означает, что антрополог или интерпретатор может и часто учится узнавать объекты. Вещи, события произносятся как «гавагай» у аборигенов. Вместо того чтобы заниматься переводом, интерпретатор может просто запомнить животное и использовать для его обозначения термин аборигенов.

Существование этой альтернативы, разумеется, не препятствует переводу. Интерпретатор, по вышеупомянутым причинам, не может просто ввести термин «гавагай» в свой собственный язык, скажем, английский. Это изменило бы английский язык, и то, что мы получили бы в итоге, не было бы переводом. Интерпретатор вместо этого может попытаться описать на английском референты термина «гавагай» – они покрыты мехом, длинноухи, имеют пушистый хвост и тому подобное. Если описание успешно, если оно применимо ко всем и только этим животным, которые вызывают высказывания, содержащие «гавагай», то выражение «покрытое мехом, длинноухое, имеющее пушистый хвост… создание» – это уникальный перевод, после этого «гавагай» может быть введен в английский язык как его сокращение[23].

В этих обстоятельствах не встает никакого вопроса о несоизмеримости.

Однако подобные обстоятельства есть далеко не всегда. Не обязательно должно существовать описание на английском языке, имеющее один и тот же референт с туземным термином «гавагай». Приобретая умение узнавать гавагаев, интерпретатор может научиться опознавать отличительные особенности, не известные англоговорящим, для которых в английском языке отсутствует описательная терминология. Возможно, аборигены по-другому структурируют животный мир, чем люди, говорящие на английском языке, используя при этом другие разграничения. При таких обстоятельствах «гавагай» остается нередуцируемым термином аборигенов, непереводимым на английский язык. Хотя говорящие на английском могут научиться использовать этот термин, например, при разговоре на языке аборигенов. Вот для таких обстоятельств я приберег понятие «несоизмеримость».

Установление референции versus перевод

Я утверждаю, таким образом, что с обстоятельствами такого рода часто сталкиваются, хотя и не всегда это признают, историки науки, пытаясь понять устаревшие научные тексты. Теория флогистона является одним из моих классических примеров, и Филип Китчер использовал его как основание для острой критики понятия несоизмеримости в целом. В чем здесь проблема, прояснится, если я вначале представлю суть этой критики, а затем укажу пункт, в котором, как мне кажется, она сбивается с пути.

Китчер утверждает, и, по-моему, справедливо, что язык химии XX века может использоваться для задания референтов терминов и выражений химии XVIII века, по крайней мере в области, к которой действительно относятся эти термины и выражения. Читая текст, скажем, Пристли и обдумывая в современных терминах описываемые им эксперименты, можно заметить, что «дефлогистированный воздух» иногда относится к самому кислороду, а иногда – к обогащенной кислородом атмосфере. «Флогистированный воздух» – разреженный воздух, в котором отсутствует кислород. Выражение «а богаче флогистоном, чем Р» имеет один и тот же референт, что и выражение «а более близок к кислороду, чем Р». В некоторых контекстах – к примеру, в выражении «при горении выделился флогистон» – термин «флогистон» вообще не имеет референта, но в других контекстах он относится к водороду[24].

Вне сомнения, историки, занимающиеся старыми научными текстами, могут и должны использовать современный язык для задания референтов устаревших терминов. Как указание аборигенов на гавагая, такие задания референции часто дают конкретные примеры, при помощи которых историки могут узнать, что означают проблематичные выражения в этих текстах. К тому же введение новой терминологии позволяет объяснить, почему и в каких областях были успешны старые теории[25]. Однако Китчер описывает процесс задания референции как перевод, и он предполагает, что его возможность делает вопрос о несоизмеримости закрытым. Похоже, здесь он ошибается в обоих случаях.

Представим на мгновение, как будет выглядеть текст, переведенный при помощи техники Китчера. Как, например, можно перевести нереференциальные вхождения термина «флогистон»? Одна возможность (вытекающая из молчания Китчера о предмете разговора и его желания сохранить истинностные значения, что в этих случаях проблематично) – оставить соответствующие места пустыми. Однако пустые места означали бы неудачу переводчика. Если референциальные выражения имеют перевод, то никакой продукт вымысла не может быть переведен в принципе, и для настоящих целей к старым научным текстам стоит относиться по крайней мере с уважением, обычно оказываемым творениям вымысла. Они рассказывают о том, во что верили ученые прошлого, безотносительно к их истинностным значениям, и это то, что должен сообщить перевод.

Альтернативно Китчер мог бы использовать ту же самую контекстуально-зависимую стратегию, которую он разработал для таких референциальных терминов, как «дефлогистированный воздух». «Флогистон» в таком случае иногда переводился бы как «субстанция, испускаемая горящими телами», иногда как «принцип металлизации», иногда другими выражениями. Как бы то ни было, эта стратегия тоже ведет к неудачам не только с такими терминами, как «флогистон», но в том числе и с референциальными выражениями. Употребление отдельного термина «флогистон» вместе с такими образованиями, как «флогистированный воздух», получаемыми из него, является одним из способов выражения идей автора посредством оригинального текста. Замена этих взаимосвязанных выражений на несвязанные или связанные по-другому термины должна по меньшей мере скрывать эти идеи, делая полученный текст непоследовательным. Проверяя перевод Китчера, часто не удается понять, как эти предложения можно поместить рядом в одном тексте[26]

Продолжить чтение
Другие книги автора